CutPro 11 - User Manual

USER MANUAL

© 2016 MAL Manufacturing Automation Laboratories Inc. MAL Manufacturing Automation Laboratories Inc.

1. Getting Started

What is CutPro?	10
License Information	
System Requirements	
User Interface overview	
Main Windows	
Workspace Tree	15
Modules	22
Tabs	22
Managers	
Buttons, Keyboard shortcuts & Warning symbols	25
	What is CutPro? License Information System Requirements User Interface overview Main Windows Workspace Tree Modules Tabs Managers Buttons, Keyboard shortcuts & Warning symbols

2. CutPro Modules

2	۵
~	3

2.1	Milling Si	mulation	30
2.1.1	Work	spaces	31
2.1.2	Mana	agers	32
2.1.2	.1 W	/orkpiece Material Manager	33
2	.1.2.1.1	Material properties	34
	2.1.2.1.1.1	Metric units	35
	2.1.2.1.1.2	Imperial units	36
2	.1.2.1.2	Coefficient parameters	38
	2.1.2.1.2.1	Average cutting coefficient model [Metric]	38
	2.1.2.1.2.2	Orthogonal to oblique model [Metric]	39
	2.1.2.1.2.3	Exponential chip thickness [Metric]	41
	2.1.2.1.2.4	Semi-mechanistic model [Metric]	42
	2.1.2.1.2.5	Sandvik model [Metric]	44
	2.1.2.1.2.6	Kienzle model [Metric]	45
	2.1.2.1.2.7	Rake face model [Metric]	46
2	.1.2.1.3	Limits	47
2	.1.2.1.4	Material standards	48
2.1.2	.2 To	ool Editor	49
2	.1.2.2.1	Milling Cutter	50
	2.1.2.2.1.1	Flat	51
	2.1.2.2.1.2	Ball-end	53
	2.1.2.2.1.3	Tapered ball-end	55
	2.1.2.2.1.4	General	57
2	2.1.2.2.1.5	Indexed	59
2	.1.2.2.2	Receptance Coupling	60
	2.1.2.2.2.1	Spindle tap testing	60
	2.1.2.2.2.2	New spinale aetinition	ь2 Сл
	2.1.2.2.2.3		υ4 СС
	2.1.2.2.2.4	kun coupling	66

9

Table of Contents

2.1.2.3	Check	for Updates	67
2.1.3	Simulatio	on Modes	69
2.1.3.1	Analyt	tical stability lobes	69
2.1.3.2	Milling	g process simulation	
2.1.3.3	Stabili	ty lobes in time domain	74
2.1.3.4	Optim	ize variable pitch	77
2.1.3.5	Cuttin	g coefficient identification	
2.1.4	Machine	& Tool	80
2.1.4.1	Tool G	Geometry	81
2.1.4.1	l.1 Cut	tter properties/definitions	82
2.1.	4.1.1.1	Geometry types	83
2.1.	4.1.1.2	General tool geometry parameters figure	83
2.1.	4.1.1.3	Number of flutes	84
2.1.	4.1.1.4	Pitch	85
2.1.	4.1.1.5	Run-out	85
2.1.	4.1.1.6	Run-out file editor	86
2.1.	4.1.1.7	Run-out example	88
2.1.	4.1.1.8	Serration	89
2.1.	4.1.1.9	Serration file editor	90
2.1.	4.1.1.10	Serration example	
2.1.	4.1.1.11	Length	93
2.1.	4.1.1.12	First bearing position	
2.1.	4.1.1.13	Lead distance	
2.1.	4.1.1.14	Lead/Helix angle	
2.1.	4.1.1.15	Rake/Relief angle	
2.1.	4.1.1.16	Taper angle	
2.1.	4.1.1.17	Tip angle	
2.1.	4.1.1.18	Corner radius	
2.1.4.1	L.2 Fla	t	
2.1.4.1	L.3 Bal	II-end	100
2.1.4.1	L.4 Tap	pered ball-end	101
2.1.4.1	L.5 Ge	neral	103
2.1.4.1	L.6 Ind	lexable	105
2.1.4.2	Struct	ural flexibility	109
2.1.4.2	2.1 Rig	id model	109
2.1.4.2	2.2 Str	uctural vibrations model	110
2.1.	4.2.2.1	Measured FRF File	110
2.1.	4.2.2.2	Modal/Residue data files	114
2.1.	4.2.2.3	Vibration parameters	116
2.1.4.2	2.3 Sta	tic deflections model	118
2.1.4.3	Edit to	ool	119
2.1.5	Workpied	ce	120
2.1.5.1	Struct	ural Flexibility	120
2.1.5.1	l.1 Rig	id model	121
2.1.5.1	L.2 Str	uctural vibrations model	121
2.1.6	Cutting C	Conditions	122

2.1.6.1	Down-milling	123
2.1.6.2	Up-milling	124
2.1.6.3	Slotting	126
2.1.6.4	Face-milling	127
2.1.7	Results	129
2.1.7.1	XYZ cutting forces	
2.1.7.2	XY resultant force	
2.1.7.3	Tangential force	
2.1.7.4	Experimental average cutting forces	132
2.1.7.5	Chip thickness	
2.1.7.6	About dynamic chip thickness	
2.1.7.7	Tool vibrations	135
2.1.7.8	Workpiece vibrations	135
2.1.7.9	Spindle power	136
2.1.7.10	Spindle torque	137
2.1.7.11	Spindle bending moment	
2.1.7.12	Up-milling surface finish	139
2.1.7.13	Down-milling surface finish	140
2.1.7.14	Stability lobes (analytical)	
2.1.7.15	Stability lobes (analytical - variable pitch)	
2.1.7.16	Stability lobes (time domain)	
2.1.7.17	Optimum variable pitches	
2.1.7.18	Fast Fourier Transform [FFT]	
2.1.8	Example Files	
2.2 Bo	pring/Turning Simulation	147
2.2 Bo	pring/Turning Simulation Workspaces	 147 148
2.2.1 2.2.2	bring/Turning Simulation Workspaces Managers	147 148 150
2.2 Bo 2.2.1 2.2.2 2.2.2.1	Dring/Turning Simulation Workspaces Managers Workpiece Material Manager	147
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2.1	Workspaces Wanagers Workpiece Material Manager	
2.2 B C 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2.2	Workspaces Managers Workpiece Material Manager 2.2.1.1 Material properties	
2.2 B C 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	Dring/Turning Simulation Workspaces Managers Workpiece Material Manager P.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2	
2.2 B (2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	Dring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units	
2.2 B (2.2.1 2.2.2 2.2.2.1 2.2.2 2.3 2.3 2.2 2.2 2.2 2.2 2.2 2.2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units 2.1.2 Coefficient parameters 2.2.1.2.1	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units 2.1.2 Coefficient parameters 2.2.1.2.1 Average cutting coefficient model [Metric] Description Descript	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric]	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric]	147 148 150 150 150 150 152 152 154 155 156 158
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric]	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric]	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric]	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.1 Imperial units 2.2.1.2 Coefficient parameters 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric] 2.2.1.2.7 Rake face model [Metric]	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1.1 Metric units 2.2.1.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.2.1.2.3 Limits	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 21.1 Material properties 22.1.1.1 Metric units 22.1.1.2 Imperial units 21.1 Average cutting coefficient model [Metric] 22.1.2.1 Average cutting coefficient model [Metric] 22.1.2.3 Exponential chip thickness [Metric] 22.1.2.4 Semi-mechanistic model [Metric] 22.1.2.5 Sandvik model [Metric] 22.1.2.6 Kienzle model [Metric] 22.1.2.7 Rake face model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.1.3 Limits 2.1.4 Material standards	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.1 Imperial units 2.2.1.2 Imperial units 2.2.1.2 Coefficient parameters 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.1.3 Limits 2.1.4 Material standards Check for Updates	
2.2. Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2 2.2 2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.1 Metric units 2.2.1.1 Metric units 2.2.1.2 Imperial units 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.1.3 Limits 2.1.4 Material standards Check for Updates Simulation Modes	
2.2 Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2 2.2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.1 Imperial units 2.2.1.2 Imperial units 2.2.1.2 Coefficient parameters 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.1.3 Limits 2.1.4 Material standards Check for Updates Simulation Modes Static analysis	
2.2. Bo 2.2.1 2.2.2 2.2.2.1 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.3 2.2.3.1 2.2.3.1 2.2.3.2	bring/Turning Simulation Workspaces Managers Workpiece Material Manager 2.1.1 Material properties 2.2.1.1 Metric units 2.2.1.2 Imperial units 2.1.2 Coefficient parameters 2.2.1.2.1 Average cutting coefficient model [Metric] 2.2.1.2.2 Orthogonal to oblique model [Metric] 2.2.1.2.3 Exponential chip thickness [Metric] 2.2.1.2.4 Semi-mechanistic model [Metric] 2.2.1.2.5 Sandvik model [Metric] 2.2.1.2.6 Kienzle model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.2.1.2.7 Rake face model [Metric] 2.1.3 Limits 2.1.4 Material standards Check for Updates Simulation Modes Static analysis Analytical stability lobes	

2.2.3.4	Cutting forces using slipline fields	173
2.2.4	Machine & Tool	174
2.2.4.1	Cutter geometry	175
2.2.4.1	1 Axial turning	
2.2.4.1	2 Radial turning	
2.2.4.1	3 Single insert boring	179
2.2.4.1	4 Multi insert boring	180
2.2.4.2	Structural flexibility	182
2.2.4.2	Rigid model	
2.2.4.2	.2 Structural vibrations model	
2.2.5	Workpiece	184
2.2.5.1	Structural Flexibility	
2.2.5.1	1 Rigid model	185
2.2.5.1	2 Structural vibrations model	
2.2.6	Cutting Conditions	186
2.2.7	Results	
2.2.7.1	XYZ cutting forces	
2.2.7.2	Feed/Tangential/Radial forces	
2.2.7.3	Average cutting forces	190
2.2.7.4	Spindle power	191
2.2.7.5	Spindle torque	192
2.2.7.6	Workpiece deflection	193
2.2.7.7	Analytical stability lobes	
2.2.8	Example Files	195
2.2.8 2.3 Dri	Example Files	195 196
2.2.8 2.3 Dril 2.3.1	Example Files Iing Simulation Workspaces	195 196 197
2.2.8 2.3 Dril 2.3.1 2.3.2	Example Files ling Simulation Workspaces Managers	
2.2.8 2.3 Dri 2.3.1 2.3.2 2.3.2.1	Example Files ling Simulation Workspaces Managers Workpiece Material Manager	
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties	
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1.1 Material properties 2.1.1.1 Metric units_2	
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3. 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2	
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3. 2.3. 2.3. 2.3.2.1	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 2.1.1.1 Material properties 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 Coefficient parameters	
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3. 2.3. 2.3.2.1 2.3.2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1	Example Files Iing Simulation Workspaces Managers Workpiece Material Manager 	195 196 197 197 198 199 200 201 202 204 204
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3. 2.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric]	
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric]	195 197 197 198 199 200 201 202 204 204 204 205 207
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3. 2.3. 2.3.2.1 2.3. 2.3.2.1 2.3. 2.3.2.1 2.3. 2.3.2.1 2.3.2.3.2.1 2.3.2.1	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric]	195 197 197 198 199 200 201 202 204 204 204 205 207 208
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric] 2.1.2.5 Sandvik model [Metric]	195
2.2.8 2.3 Dril 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric] 2.1.2.5 Sandvik model [Metric] 2.1.2.6 Kienzle model [Metric]	195 195 197 198 199 200 201 202 201 202 204 204 204 204 205 207 208 210 211
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1 Metric units_2 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric] 2.1.2.5 Sandvik model [Metric] 2.1.2.6 Kienzle model [Metric] 2.1.2.7 Rake face model [Metric]	195
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3. 2.3.2.1 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager 1 Material properties 2.1.1 Metric units_2 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric] 2.1.2.5 Sandvik model [Metric] 2.1.2.6 Kienzle model [Metric] 2.1.2.7 Rake face model [Metric] 3 Limits	195
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3. 2.3.2.1 2.3.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager .1 Material properties 2.1.1 Metric units_2 2.1.1.1 Metric units_2 2.1.1.2 Imperial units_2 2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric] 2.1.2.5 Sandvik model [Metric] 2.1.2.6 Kienzle model [Metric] 2.1.2.7 Rake face model [Metric] 3 Limits 4 Material standards	195
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3. 2.	Example Files ling Simulation Workspaces Managers Workpiece Material Manager .1 Material properties 21.1.1 Metric units_2 21.1.2 Imperial units_2 .2 Coefficient parameters 21.2.1 Average cutting coefficient model [Metric] 21.2.2 Orthogonal to oblique model [Metric] 21.2.3 Exponential chip thickness [Metric] 21.2.4 Semi-mechanistic model [Metric] 21.2.5 Sandvik model [Metric] 21.2.6 Kienzle model [Metric] 21.2.7 Rake face model [Metric] 3 Limits 4 Material standards 4 Material standards	195
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3. 2.	Example Files Iing Simulation	195
2.2.8 2.3.1 2.3.2 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3.2.1 2.3. 2.3.2.1 2.3. 2.3. 2.3. 2.3. 2.3. 2.3. 2.3. 2.3. 2.3. 2.3.2.1 2.3.3.1	Example Files Ling Simulation Workspaces Managers Workpiece Material Manager 1.1 Material properties 2.1.1 Metric units_2 2.1.1 Metric units_2 2.1.1 Metric units_2 2.1.2 Imperial units_2 2.1.2 Coefficient parameters 2.1.2.1 Average cutting coefficient model [Metric] 2.1.2.2 Orthogonal to oblique model [Metric] 2.1.2.3 Exponential chip thickness [Metric] 2.1.2.4 Semi-mechanistic model [Metric] 2.1.2.5 Sandvik model [Metric] 2.1.2.6 Kienzle model [Metric] 2.1.2.7 Rake face model [Metric] 3 Limits 4 Material standards Check for Updates Simulation Modes Static analysis	195

2.3.4	Machine & Tool	220
2.3.4.1	Cutter geometry	220
2.3.4	.1.1 Twist drill	
2.3.4	.1.2 Point thinning drill	
2.3.4	.1.3 Arbitrary edge drill	
2.3.4.2	Structural flexibility	225
2.3.4	.2.1 Rigid model	
2.3.4	.2.2 Structural vibrations model	
2.3.5	Workpiece	227
2.3.5.1	Rigid model	227
2.3.6	Cutting Conditions	227
2.3.7	Results	
2.3.7.1	XYZ cutting forces	
2.3.7.2	Spindle torque	229
2.3.7.3	Analytical stability lobes	
2.3.8	Example Files	232
2.4 M	odal Analysis	
2.4.1	Information	233
2.4.1.1	What is Modal Analysis?	
2.4.1.2	License Information	235
2.4.1.3	System Requirements	
2.4.2	User Interface Overview	
2.4.2.1	Project Types	
2.4.2	.1.1 Bar (1D)	
2.4.2	.1.2 Plane (2D)	
2.4.2	.1.3 Flexible Tool FRF	
2.4.2.2	Simple Modal Analysis	
2.4.2	.2.1 Menus & Buttons	
2.4.2	.2.2 Select FRF Files Window	
2.4.2	.2.3 Found Modes / Optimized Modes	
2.4.2	.2.4 Mode Selection Dialogue	
2.4.2	.2.5 Frequency Response Charts	
2.4.2.3	Advanced Modal Analysis	
2.4.2	.3.1 Menus & Buttons	
2.4.2	.3.2 Select FRF Files Window	
2.4.2	.3.3 Found Modes / Optimized Modes	
2.4.2	.3.4 Mode Selection Dialogue	
2.4.2	.3.5 Frequency Response Charts	279
2.4.3	Unit Systems	
2.4.3.1	Metric	
2.4.3.2	Imperial	
2.4.4	Exported Files	285
2.4.4.1	Fitted Frequency Response (*.frf)	
2.4.4.2	Modal Parameters (*.cmp)	
2.4.5	Support	288

Table of Contents

	2.4.5.1	Examples	
2	.5 Ta	ap Testing	291
	2.5.1	Information	
	2.5.1.1	Printing help information	
	2.5.1.2	System requirements	
	2.5.2	Basic Theory	
	2.5.2.1	Vibration	
	2.5.3	Quick Measurement Guide	
	2.5.3.1	Measurement setup	
	2.5.3.2	Measurement settings	
	2.5.3.3	Measurement procedure	
	2.5.3.4	Saving & exporting	
	2.5.4	MALTF Functions	
	2.5.4.1	Main window	
	2.5.4.2	Settings window	
2	.6 D	ata Acquisition	
	2.6.1	Information	
	2.6.1.1	Printing help information	
	2.6.1.2	System requirements	
	2.6.2	Quick Start Guide	
	2.6.2.1	Continuous data collection	
	2.6.2.2	Saving & loading	
	2.6.3	Settings Window	
	2.6.3.1	Channel tab	
	2.6.3.2	Filter tab	
	2.6.3.3	Display tab	
	2.6.3.4	Graph titles tab	
	2.6.3.5	Log file tab	
	2.6.3.6	Zoom defaults tab	
	2.6.4	Main Window	
	2.6.4.1	Interface	
3.	File F	ormats	329
4.	Train	ing / Videos	331
5.	Supp	ort / Helpdesk	333
Ind	lex		337

Getting Started

1 Getting Started

CUTPRO

Introduction

©CUTPRO VERSION 11

CutPro is an analytic and time-domain machining process simulation software package, developed for off-line machining process optimization.

CutPro can be used by several end users for the following purposes:

- ✓ Machine Design
- ✓ Spindle Design
- ✓ Cutting Tool Design
- ✓ Process Design
- ✓ NC Programming
- ✓ Cutting Tool Selection and Optimization
- ✓ Troubleshooting Vibration Problems in machining

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

1.1 What is CutPro?

CUTPRO

What is CutPro?

Today top production engineers use CUTPRO to analyze, troubleshoot and optimize machining operations throughout the entire machining process. For more than two decades, CUTPRO's unique algorithms have assisted our customers in releasing untapped productivity opportunities within their existing equipment, tooling and machining processes. It has also assisted them in selecting or designing new equipment and tooling. End-users such as production engineers, tool designers, machine designers, control designers, spindle designers and more can all use CUTPRO to their benefit. See what our customers have to say by visiting our

testimonials online at http://www.malinc.com/about-us/testimonials/.

Why use CutPro?

Research for CUTPRO is based on MAL UBC, which is the largest and most credited laboratory in this field of research in North America. Based on highly specific knowledge, CUTPRO is a user-friendly software delivering the most advanced and comprehensive machining process solutions available. Taking the first step to becoming your productivity partner, our machining experts carefully listen to your objectives and recommend the right combination system to match your needs and budget. Our integrated support system can be used to contact our wide range of machining experts or software developers, and we will get back to you within a day or less, minus weekends and holidays.

Summary

CUTPRO has become the choice for <u>well-known manufacturing companies</u> striving to deliver parts on-time with minimum production errors and scrap rates. Users have successfully implemented this leading edge machining technology and achieved the lowest possible cost per component, with the highest possible performance.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

1.2 License Information

CUTPRO

License Information

Manufacturing Automation Laboratories Inc. (MAL) reserves the right to modify or discontinue the software or the software specification identified in this document without notice. MAL advises its customers to obtain the latest version of the software specifications to verify, before placing orders, that the information being relied upon by the customer is current. MAL makes no warranties, expressed or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose, regarding the software. MAL does not warrant, guarantee or make any representations regarding the use or the results of the use of the software in terms of its correctness, accuracy, reliability, currentness or otherwise. You assume the entire risk as to the results and performance of the software.

In no event will MAL and its directors, officers, employees or agents be liable to you for any consequential, incidental or indirect damages (including damages for loss of business profits, business interruption, loss of business information, and the like) arising out of the use or inability to use the software even if MAL has been advised of the possibility of such damages. MAL's liability to you for actual damages from any cause whatsoever, and regardless of the form of the action (whether in contract, tort

(including negligence), product liability or otherwise), shall in no case exceed the invoiced amount paid for the right to use the software and the documentation.

1,284,737. 2005/12/30. MAL Manufacturing Automation Laboratories, Inc., 2829 Highbury Street, Vancouver, BRITISH COLUMBIA V6R 3T7 Representative for Service! Representant pour Signification: OVEN WIGGS GREEN & MUTALA LLP, SUITE 480 -THE STATION, 601 WEST CORDOVA STREET, VANCOUVER, BRITISH COLUMBIA, V6B1G1

CUTPRO

WARES:

(1) Computer software for use in optimizing the performance of machining equipment.

(2) Machine tools for use in the metal working industry and control systems for such machine tools.

SERVICES:

Consulting in the field of the design and operation of machine tools. Used in CANADA since at least as early as 1999 on wares (1).

Proposed Use in CANADA on wares (2) and on services.

MARCHANDISES:

(1) Logiciels pour l'optimisation du rendement du materiel d'usinage.

(2) Machines-outils pour utilisation dans l'industrie du travail des metaux et systemes de commande pour lesdites machines-outils.

SERVICES:

Consultation en conception et exploitation de machines-outils. Employee au CANADA depuis au moins aussi tot que 1999 en liaison avec les marchandises(1).

Emploi projete au CANADA en liaison avec les marchandises (2) et en liaison avec les services.

Trademarks

Pentium is a trademark of Intel Corporation. Microsoft, MS-DOS are registered trademarks and Windows XP, Windows Vista, Windows 7, Windows 8, Windows 8.1 are trademarks of Microsoft Corporation. IBM and PC/AT are registered trademarks of International Business Machines Corporation. All other trademarks are trademarks or registered trademarks of their respective owners

1.3 System Requirements

manufacturing automation laboratories

CUTPRO

System requirements

Required hardware and software:

- PC: PC with a Intel/AMD processor with a minimum of 2 cores at 3.0Ghz
- Operating System: We highly recommend updating to the latest service pack for best

compatibility.

- o Windows 10
- o Windows 8 or 8.1
- o Windows 7
- o Windows Vista SP1 or later
- o Windows XP SP3
- o Windows Server 2008 (Server Core not supported)
- o Windows Server 2008 R2 (Server Core supported with SP1 or later)
- o Windows Server 2003 SP2.
- Memory: We recommend a minimum of 6GB of RAM.
- Hardlock Key / Network License: Will be provided when the software is purchased.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

1.4 User Interface overview

CUTPRO

User Interface overview

CutPro's user interface follows the standard layout used by most Windows applications:

- Main windows
- Modules

- <u>Tabs</u>
- Simulation
- Workpiece material manager
- <u>Buttons, shortcuts & warnings:</u>
 - o Home tab buttons
 - o Tools tab functions
 - o Main function buttons
 - o Plot function buttons
 - o Workpiece material manager buttons
 - o Right-click shortcuts
 - o Keyboard shortcuts

1.4.1 Main Windows

CUTPRO

Main Windows

The main windows of CutPro's user interface are as follows:

Ribbon Bar: Contains a series of tabs and buttons, each enabling access to the various functionality available in CutPro. Ex. File, Home and Tools.

Workspace Tree: Displays all of the elements of a CutPro project. The order of elements corresponds to the order that you will configure each item.

Plots: Located in the center of the program window, and contains plotted charts dependant on the task performed at hand.

Properties: Displays all information corresponding to the selected item in the workspace tree.

Simulation Summary: Displays all of the parameters in the current simulation.

1.4.2 Workspace Tree

CUTPRO

Simulation

Þ

The "Simulation Workspace Tree" uses a top-to-bottom workflow process, and there are a

few main tabs which require attention in milling (for example):

- Workspace Define the name and unit system
- **Simulation mode** Milling analysis

Machine & Tool Tooling geometries/orientation and properties

- Structural Flexibility Flexibility data for the Machine & Tool structure
- Workpiece Material properties during machining
 - Structural Flexibility Flexibility data for the Workpiece/Fixture structure

Cutting Conditions Speeds, feeds, engagement and operation

parameters

Results Plots of information obtained from the simulations

Workspace 🕘

Workspace Tree			
🕘 Metric Milling Workspace (1 item) 🔺		
🔺 🎰 Analytical stability lobes: 💈	im 1		
🔺 🔑 Machine and Tool			
Structural Flexibility (Vibration Parameters)			
▲ Workpiece			
Structural Flexibility (Rigid)			
Cutting Conditions			
Properties			
Workspace			
 General 			
Name	work 1		
Unit	Metric		

The workspace name is the file name. In this case it is work1.cws

Simulation mode 🔤

Select/Edit simulation mode and animation data

Machine & Tool 🎤

Workspace Tree				
-	Metric Milling Workspace (item)		
4	Analytical stability lobes: Si	m 1		
	Machine and Tool		Edit tool »	
	Structural Flexibility (Vil	ration Parameters)		
	4 🥥 Workpiece			
	Structural Flexibility (Rig	id)		
	Cutting Conditions			
Pr	operties			
C	utter Properties			
4	General			
	Cutter Type	Flat end		
	Number of Flutes	4		
4	Pitch angle			
	Uniform	\checkmark		
	Angle	90.000 °		
4	Helix angle			
	Uniform	\checkmark		
	Angle	30.000 °		
4	Parameter			
	Diameter (D)	19.050 mm		
	Relief angle	5.000 °		
	Rake angle	5.000 °		
	Corner radius (R)	0.000 mm		

Select/Edit main cutter properties manually or using the tool editor

Structural Flexibility (Machine & Tool) 🕏

Set the model type and dynamics data type of the structural flexibility

Workpiece 🧼

Select/Edit the workpiece material model

Structural Flexibility (Workpiece) 🕏

Set the model type and dynamics data type of the structural flexibility

Cutting Conditions

🕘 Metric Milling Workspace (1 item)			
🔺 👩 Analytical stability lobes: 💈	im 1			
🔺 🔑 Machine and Tool	Edit tool »			
📦 Structural Flexibility (Vil	bration Parameters)			
🔺 🧼 Workpiece				
Structural Flexibility (Rig	qid)			
III Cutting Conditions				
▲ Kesults				
√ Stability Lobes (Analytical)				
Properties				
Properties				
Properties Cutting conditions				
Properties Cutting conditions General				
Properties Cutting conditions General Spindle direction	Clockwise			
Properties Cutting conditions General Spindle direction Milling mode	Clockwise Slotting			
Properties Cutting conditions General Spindle direction Milling mode Feedrate (f)	Clockwise Slotting 0.200 mm/flute			

Select/Edit cutting conditions (dependant on simulation type)

Results 🞽

Workspace Tree		
▲ Results	>>	
Cutting Forces		
Tangential Cutting Force	>	
🟹 Resultant Force on XY Plane	>	
Chip Thickness	>	
🗹 Tool Vibration	>	
Spindle Power	>	
🗹 Spindle Torque	>	
🗹 Spindle Bending Moment	>	
🗹 Up Milling Surface Finish	>	
🗹 Down Milling Surface Finish	>	•
	_ ►	

Plot results from simulation (dependant on simulation type)

1.4.3 Modules

CUTPRO

CutPro Modules

CutPro comes with various package options known as Modules, the user can customize their own package option:

Each module has it's own manual

CutPro: Milling Simulation: Simulates milling operations (cutpro.exe) See http://www.malinc.com/products/cutpro/milling/ for an introductory description

<u>CutPro: Boring/Turning Simulation</u>: Simulates boring/turning operations (cutpro.exe)

See <u>http://www.malinc.com/products/cutpro/boringturning/</u> for an introductory description.

CutPro: Modal Analysis (MODAL): Analysis of tap testing data (modal.exe) See <u>http://www.malinc.com/products/cutpro/modal-analysis/</u> for an introductory description

CutPro: Tap Testing (MALTF): Plots data done from a tap test (maltf.exe) See <u>http://www.malinc.com/products/cutpro/maltf/</u> for an introductory description.

CutPro: Data Acquisition (MALDAQ): Records data from experimentation (maltf.exe)

See <u>http://www.malinc.com/products/cutpro/maldaq/</u> for an introductory description.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

1.4.4 Tabs

CUTPRO

Tabs

CutPro consists of three main tabs:

- File tab (Book Icon)
- Home tab
- Tools tab

File Tab

S ■ ► + 8 # 8 = +	CutPro [Milling] - [Ex01_SingleAnalytical_Single	Time_MillingSimulation >> Sim	ulation, 15300 RPM, 2mm Depth	of Cut] – 🗆 🗙
Home Tools					() 🔐 🔽 v11.1.15.1
New workspace	Milling Simulations	۲	Metric 🔘 Imperial		
Open	Analytical stability lobes	Milling process simulation	Stability Johes in time		Cutting coefficient
Save as	Boring/Turning Simulatio	ns	domain		identification
Recent Workspace folder Examples	Static analysis	Analytical stability lobes	Cutting coefficient identification	Vorkpiece Cutting forces using slipline fields	
About	Drilling Simulations				
Support Help					
Exit	Static analysis	Analytical stability lobes	Hole shape		
			Mi 🐼 🖄 💵		

- Quick access to file management
- Report Generator
- Workspace creation with unit selection
- Example workspaces
- Support
- Help

Home Tab:

- Used to control simulations and result plots
- Quick-access to CutPro Modules
- Quick-access to technical support within CutPro

Tools Tab:

- Managers
- Language Settings.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

1.4.5 Managers

CUTPRO

Managers

Accessed under the "Tools", the Manager section is mainly used for managing workpiece material definitions and cutting tool files in your tool library

The <u>Workpiece material manager</u> is the central location in CutPro for defining materials and their properties.

Using this function the user can simply load a pre-existing material inside a project rather than creating it on-the-fly.

The <u>Tool Editor</u> is used to define and save tool geometry / tools, or perform receptance coupling.

Using this function the user can simply load a pre-existing tool inside a project rather than creating it on-the-fly.

The <u>Check for Updates</u> will do just that, it will notify the user if there is a new CutPro Version and Installation available.

CutPro does this automatically, however if you select "Remind me later", you will have to manually update CutPro using this button.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

1.4.6 Buttons, Keyboard shortcuts & Warning symbols

manufacturing automation laboratories

CUTPRO

Buttons, Keyboard shortcuts & Warning symbols

Home tab buttons

- C Start: Runs the selected simulation
- Add: Add a new simulation in the active workspace
- **Remove**: Removes selected simulation in the active workspace
- Duplicate: Duplicates selected simulation in the active workspace

Plot Results: Plots all results from selected simulation

Plot: Plot selected result from simulation

- Export: Export select plot as a (*.csv) file in desired location
- Export All: Exports all plots to (*.csv) files in desired location

Close all plots: Removes the plots from the Plot Window (does not delete plot)

Tabs: Results plots are laid out in tabs

Multi-windows: Result plots are laid out in seperate windows

Helpdesk: Integrated CutPro support. Click to submit support tickets on-the-fly.

Tools tab buttons

Workpiece Material Manager: Allows the user to define materials

Tool Editor: Allows the user to define cutting tools in a tool database

Check for Updates: Manually check for software updates (CutPro does this during start-up)

Language: Select the desired language for CutPro

Main Function buttons

--- File Tab: Quick access to file management

Checkbox: Allow/Deny added functions

Dropdown Menu: Select appropriate property from list

- **Plot**: Plots single result graph
- Plot All: Plots all results

Plot Function buttons

Cursor: Observe chart

🛟 Pan: Pan chart

Rest States and States

Q Zoom vertical: Zoom in Y axis only

Zoom box: Select boxed area to zoom (Zoom XY)

Getting Started

Workpiece Material Manager buttons

Unit toggle: Toggles unit system between Metric/Imperial

- Close: Closes the workpiece material manager
- New category: Creates a new material category
- **Delete category**: Deletes a material category
- New material: Creates a new material
- Delete material: Deletes a material
- Apply changes: Accept changes
- **Cancel**: Deny changes/cancel window
- Drop-down Menu: Select appropriate property from list
- Checkbox: Allow/Deny added functions
- Collapse Menu: Hides/Shows menu

Right-click Function buttons

Right click on Plot: Panning, zooming, chart reset, save, copy and print.

Warning Symbols

- **Warning**: A warning note regarding the task at hand
- Error: Input not valid
- A Simulation Warning: Simulation properties have changed

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

CutPro Modules

2 CutPro Modules

CutPro Modules

CutPro comes with various package options known as Modules, the user can customize their own package option:

Each module has it's own manual

CutPro: Milling Simulation: Simulates milling operations (cutpro.exe) See <u>http://www.malinc.com/products/cutpro/milling/</u> for an introductory description

CutPro: Boring/Turning Simulation: Simulates boring/turning operations (cutpro.exe)

See http://www.malinc.com/products/cutpro/boringturning/ for an introductory description.

CutPro: Drilling Simulation: Simulates drilling operations (cutpro.exe) See <u>http://www.malinc.com/products/cutpro/drilling/</u> for an introductory description.

CutPro: Modal Analysis (MODAL): Analysis of tap testing data (modal.exe) See <u>http://www.malinc.com/products/cutpro/modal-analysis/</u> for an introductory description

CutPro: Tap Testing (MALTF): Plots data done from a tap test (maltf.exe) See <u>http://www.malinc.com/products/cutpro/maltf/</u> for an introductory description.

CutPro: Data Acquisition (MALDAQ): Records data from experimentation (maldaq.exe)

See <u>http://www.malinc.com/products/cutpro/maldaq/</u> for an introductory description.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1 Milling Simulation

manufacturing automation laboratories

CUTPRO

CutPro: Milling Simulation - Overview

The "Simulation Workspace Tree" uses a top-to-bottom workflow process, and there are a

few main tabs which require attention in milling (for example):

Workspace Define the name and unit system

Simulation mode Analytical stability, milling process simulation, stability lobes in time domain, optimize variable pitch & cutting coefficient

CUTPRO

identification

- Machine & Tool Tooling geometries/orientation and properties
 - Structural Flexibility Flexibility of the tool, holder, spindle and machine
- Workpiece Material properties
 - Structural Flexibility Flexibility of the workpiece / fixture setup
- **<u>Cutting Conditions</u>** Speeds, feeds, and operation parameters
- Results Plots of information obtained from the simulation

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.1 Workspaces

CUTPRO

Workspace 🧈 - Overview

In CutPro the user can define what is called a "Workspace". Inside of this workspace file (*.cws) one can perform multiple simulations simultaneously and compare them to one-another.

Creating, opening and saving a workspace

A workspace may be managed under the file tab, here you may also define the unit system of preference:

Unit system in CutPro

Both Metric and Imperial unit systems for a workspace can be swapped/converted anytime:

Workspace Tree		
Metric Milling Workspace (1 item)		
Analytical stability lobes: sim 1		
🔺 🔑 Machine and Tool		
Structural Flexibility (Vibration Parameters)		
⊿ 🧼 Workpiece		
Structural Flexibility (<i>Rigid</i>)		
Cutting Conditions		
▲ 😹 Results		
√ Stability Lobes (Analytical)		
Properties		
Workspace <unit></unit>		
 General 		
Name	work 1	
Unit	Metric 💽	
	Metric	
	Imperial	

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2 Managers

CutPro 11 - User Manual

CUTPRO

Managers - Overview

Accessed under the "Tools", the Manager section is mainly used for managing workpiece material definitions and cutting tool files in your tool library

The <u>Workpiece material manager</u> is the central location in CutPro for defining materials and their properties.

Using a material added with this function, the user can simply load their desired material into a project.

The <u>Tool Editor</u> is used to define and save tool geometry / tools, or perform receptance coupling.

Using this function the user can simply load a pre-existing tool inside a project rather than creating it on-the-fly.

The <u>Check for Updates</u> will do just that, it will notify the user if there is a new CutPro Version and Installation available.

CutPro does this automatically, however if you select "Remind me later", you will have to manually update CutPro using this button.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.1 Workpiece Material Manager

CUTPRO

Workpiece Material Manager 🔊 - Overview

The Workpiece Material Manager contains two general category of workpiece definitions:

- Standardized workpiece materials (Pre-existing, with CutPro installation) Ex. Aluminum 7050-T6 (AISI Standard Material)
- User-defined workpiece materials (New: Defined by the Customer or by MAL through <u>material</u> <u>characterization services</u>)
 Ex. Secret in-house material

Regardless of which category of material you are using, the following information and data is present.

- <u>Material properties</u>⁽¹⁾
- <u>Coefficient parameters</u>⁽²⁾⁽³⁾
- Limits⁽⁴⁾
- <u>Material Standards</u>

Categories	Material Properties	(
Aluminum	Material Name	Aluminum 7075-T6
> Copper	Category	MAL Materials
Copper [High-Alloy]	Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, 1
> Heat Resistant	Hardness	150.000 HB
> Iron [Chilled Cast]	Density	2.810 g/cm ³
> Iron [Compacted Graphite]	Thermal Conductivity	130.000 W/mK
> Iron [Grey Cast]	Specific Heat Capacity	960.000 J/kgK
> Iron [Malleable Cast]	Youngs Modulus	7.20e+010 N/m ²
> Iron [Nodular Cast]	Impact Strength	0.000 N/m ²
> Iron [Nodular SG]	Elongation	0.110 %
MAL Materials	Reduction in Area	0.000 %
Aluminum 7075-T6 [150]	Electrical Conductivity	1.94e+007 S/m
Aluminum 356.0-T6 [73]	Condition	
AISI P20 Mold Steel [300]	Tensile Strength	5.72e+008 N/m ²
Aluminum 6061-T6 [95]	Yield Strength	5.03e+008 N/m ²
Aluminium 7050-T74 [147]	Shear Strength	3.31e+008 N/m ²
AISI 4340 Steel [217]	Heat Treatment	
Aluminum 7050-T7451 Low Speed V<200 m/min [140]	Melting Point (Low)	477.000 °C
Aluminum 7050-T7451 [140]	Melting Point (High)	635.000 °C
Titanium Alloy Ti6Al4V [340] NRC - MDF	Coefficient of Thermal Expansion	25.200 μm/m-°C
CAST Iron C450 Gray Cast iron [75]	Limits	(
Titanium Alloy Ti6Al4V [340]	Chip Thickness (min)	0.000 mm
Inconel 718 [245]	Chip Thickness (max)	0.000 mm
Inconel 625 [190]	Cutting Speed (min)	0.000 m/min
Niobium [80]	Cutting Speed (max)	0.000 m/min
Thermo-Span Superalloy [340]	Rake Angle (min)	0 *
Waspaloy [351] AISI 630 Steel [352]	Rake Angle (max)	0 *
٩ [] ٢	Material Standards	(

- (1) Material properties are only used for reference, these properties are not meaningful for machining simulation
- (2) Coefficient parameters are only shown for user-defined workpiece materials

Meducines Metavial M

- (3) **Coefficient parameters** are <u>the only numbers entered into the Material Manager which change simulation results--they</u> <u>are essential for accurate simulations</u>
- (4) Limits affect the range in which the force model was created, however these entries are not used within CutPro calculations.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.1.2.1.1 Material properties

CUTPRO

Material properties

The *"Material Properties"* tab displays the specifications of the material given in either unit system:

- <u>Material Properties [Metric units]</u>
- <u>Material Properties [Imperial units]</u>

*Units may be toggled at any time in the Workpiece Material Manager

Aaterial Properties	
Material Name	
Category	MAL Materials
Composition	
Hardness	0.000 HB
Density	0.000 g/cm ³
Thermal Conductivity	0.000 W/mK
Specific Heat Capacity	0.000 J/kgK
Youngs Modulus	0.000 N/m ²
Impact Strength	0.000 N/m ²
Elongation	0.000 %
Reduction in Area	0.000 %
Electrical Conductivity	0.000 S/m
Condition	
Tensile Strength	0.000 N/m ²
Yield Strength	0.000 N/m ²
Shear Strength	0.000 N/m ²
Heat Treatment	
Melting Point (Low)	0.000 °C
Melting Point (High)	0.000 °C
Coefficient of Thermal Expansion	0.000 μm/m-°C

Purpose

The "Material Properties" section is primarily used for reference in order to better understand how the material behaves. These properties are not used in CutPro's engine, this is due to the fact that many tests used to identify these properties are far different than machining. For example, the strain rates of the material under machining are extremely high in comparison to that of a tensile test.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.1.1.1 Metric units

manufacturing automation laboratories			CUTPRO	
Material properties - METRIC units				
Matarial name		Material Properties	۲	
Malenai name		Material Name	Aluminum 7075-T6	
0-1		Category	MAL Materials	
Category		Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, 1	
Composition		Hardness	150.000 HB	
		Density	2.810 g/cm³	
		Thermal Conductivity	25.200 W/mK	
Hardness	[HB]	Specific Heat Capacity	960.000 J/kgK	
		Youngs Modulus	7.20e+010 N/m ²	
Donoitu	[e /e m 3]	Impact Strength	0.000 N/m ²	
Density	[g/cm ³]	Elongation	0.110	
		Reduction in Area [%]	0.000	
Thermal	[W/mK]	Electrical Conductivity	1.94e+007 S/m	
Conductivity		Condition		
Conductivity		Tensile Strength	5.72e+008 N/m ²	
0	[J/kgK]	Yield Strength	5.03e+008 N/m ²	
Specific Heat		Shear Strength	3.31e+008 N/m²	
Capacity		Heat I reatment		
		Melting Point (Low)	477.000 °C	
Youngs Modulus [N/m2]		Vieiting Point (High)	635.000 °C	
i curigo ivicuulu.		Coefficient of Thermai Expansion	0.000 μm/m-°C	

35

Impact Strength	[<i>N/m</i> ²]
Elongation	
Reduction in Area	[%]
Electrical Conductivity	[S/m]
Condition	
Tensile Strength	[<i>N/m</i> ²]
Yield Strength	[<i>N/m</i> ²]
Shear Strength	[<i>N/m</i> ²]
Heat Treatment	
Melting Point (Low)	[°C]
Melting Point (High)	[°C]
Coefficient of Thermal Expansion	[µm/m-°C]

2.1.2.1.1.2 Imperial units

Material properties - IMPERIAL units
37

Material name

Category

Composition

Hardness	[<i>HB</i>]
Density	[<i>lb/in</i> ³]
Thermal Conductivity	[BTu/hr-ft°F]
Specific Heat Capacity	[BTu/lb°F]
Youngs Modulus	[lbf/ft ²]
Impact Strength	[<i>lbf/ft</i> ²]
Elongation	
Reduction in Area	[%]
Electrical Conductivity	[S/ft]
Condition	
Tensile Strength	[lbf/ft ²]
Yield Strength	[lbf/ft ²]
Shear Strength	[lbf/ft ²]
Heat Treatment	
Melting Point (Low)	[°F]
Melting Point (High)	[°F]
Coefficient of Thermal Expansion	[in/ft°F]

viateriai Properties	(
Material Name	Al
	Aluminum 7073-16
Category	MAL Materials
Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, 1
Hardness	150.000 HB
Density	0.102 lb/in ³
Thermal Conductivity	14.560 BTu/hr-ft°F
Specific Heat Capacity	0.229 BTu/lb°F
Youngs Modulus	1.04e+007 lbf/ft ²
Impact Strength	0.000 lbf/ft ²
Elongation	0.110
Reduction in Area [%]	0.000
Electrical Conductivity	5918446.599 S/ft
Condition	
Tensile Strength	82961.570 lbf/ft ²
Yield Strength	72953.968 lbf/ft ²
Shear Strength	48007.482 lbf/ft ²
Heat Treatment	
Melting Point (Low)	858.600 °F
Melting Point (High)	1143.000 °F
Coefficient of Thermal Expansion	0.000 in/ft°F

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.1.2 Coefficient parameters

CUTPRO

Coefficient parameters

The *"Coefficient parameters"* tab offers 9 different force models which may be used to characterize user-defined materials.

METRIC Units

- Average cutting coefficient model
- Orthogonal to oblique model
- Exponential chip thickness model
- <u>Semi-mechanistic model</u>
- <u>Sandvik model</u>
- Kienzle model
- <u>Rake face model</u> *Imperial Units are not supported for Force Models

Coefficient Para	meters	۸
Force Model		Rake Face Model
Kte (N/mm)	0	24.76
Kre (N/mm)	0	27.36
Kae (N/mm)	0	0
Ku (N/mm²)	0	1000.78
Kv (N/mm²)	0	1526.5514
	Coefficient Paran Force Model Kte (N/mm) Kre (N/mm) Kae (N/mm ²) Kv (N/mm ²)	Coefficient Parameters Force Model Kte (N/mm) Kre (N/mm) Kae (N/mm) Ku (N/mm ²) Kv (N/mm ²)

Purpose

The "Coefficient parameters" section is used for defining a force model for a user material⁽¹⁾. The force model consists of constants or equations that are used in CutPro's engine. Using dynamometers and experiments, the material is machined and force data is collected. This data i used in constructing a force model which characterizes how the material behaves under various machining conditions. The model is then used to calculate cutting forces, torque, power and so on. If there are any inaccuracies with this model (material characterization), the simulations in CutPro will be completely wrong. If you are working with your own custom material and are not familiar with the science behind this, we encourage customers to contact MAL Inc for assistance.

(1) Coefficient parameters are only shown for user-defined workpiece materials

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.1.2.1 Average cutting coefficient model [Metric]

Average cutting coefficient model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$

$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$

$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.1.2.2 Orthogonal to oblique model [Metric]

CUTPRO

Orthogonal to oblique model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{tc} = \frac{\tau}{\sin \varphi_n} \frac{\cos(\beta_n - \alpha_n) + \tan \eta_c \sin \beta_n \tan i}{c}$$
$$K_{rc} = \frac{\tau}{\sin \varphi_n \cos i} \frac{\sin(\beta_n - \alpha_n)}{c}$$
$$K_{ac} = \frac{\tau}{\sin \varphi_n} \frac{\cos(\beta_n - \alpha_n) \tan i - \tan \eta_c \sin \beta_n}{c}$$
$$c = \sqrt{\cos^2(\varphi_n + \beta_n - \alpha_n) + \tan^2 \eta_c \sin^2 \beta_n}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

$^{ au}$ ("t"): shear stress [N/mm²]	ϕ_n ("f"): shear angle [°]
β _n ("b"): friction angle [°]	^𝔐 𝑘: rake angle [°]
^η : chip flow angle [°]	<i>i</i> : helix angle [°]

2.1.2.1.2.3 Exponential chip thickness [Metric]

manufacturing automation laboratories

CUTPRO

Exponential chip thickness

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$
$$K_{tc} = KT \cdot h^{-p}$$
$$K_{rc} = KR \cdot KT \cdot h^{-q}$$
$$K_{ac} = KA \cdot KT \cdot h^{-r}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]

<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]
<i>KT</i> : tangential shearing coef. parameter	<i>p :</i> tangential chip thickness order
<i>KR</i> : radial shearing coef. parameter	<i>q :</i> radial chip thickness order
KA : axial shearing coef. parameter	<i>r :</i> axial chip thickness order

2.1.2.1.2.4 Semi-mechanistic model [Metric]

CUTPRO

Semi-mechanistic model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$

$$K_{tc} = k_n \Big[\cos \alpha_n + k_f \cos \eta \sin \alpha_n + k_f \tan i \sin \eta \Big]$$

$$K_{rc} = k_n \Big[-\frac{\sin \alpha_n}{\cos i} + k_f \cos \alpha_n \frac{\cos \eta}{\cos i} \Big]$$

$$K_{ac} = k_n \Big[\tan i \cos \alpha_n - k_f \sin \eta + k_f \tan i \cos \eta \sin \alpha_n \Big]$$

Parameters:	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]
α_n : rake angle [°]	<i>k_n</i> : cutting pressure on rake face

<i>i</i> : helix angle [°]	k_{f} : cutting pressure rate on flank face
^η : chip flow angle [°]	

2.1.2.1.2.5 Sandvik model [Metric]

Sandvik force model

manufacturing automation laboratories

Equations:

MAL

$$\begin{split} dF_t &= K_{tc} * h * dz \\ dF_r &= K_{rc} * h * dz \\ dF_a &= K_{ac} * h * dz \\ K_{tc} &= K_t * h^{-p} \\ K_{rc} &= K_c * h^{-q} \\ K_{ac} &= K_r * h^{-r} \end{split}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	
<i>dF_r</i> : differential radial force [N]	
<i>dF_a</i> : differential axial force [N]	
	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	K_{rc} : radial shearing coefficient [N/mm ²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

44

manufacturing automation laboratories

Kienzle force model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$

$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$

$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$

$$K_{tc} = K_{u} (\sin \eta \sin i + \cos \eta \cos i \sin \alpha_{n}) + K_{v} (\cos \alpha_{n} \cos i)$$

$$K_{rc} = K_{u} (\cos \alpha_{n} \cos \eta) - K_{v} \sin \alpha_{n}$$

$$K_{ac} = K_{u} (-\sin \eta \cos i + \cos \eta \sin i \sin \alpha_{n}) + K_{v} (\cos \alpha_{n} \sin i)$$

$$K_{u} = K_{u_{11}} h^{(-u)}$$

$$K_{v} = K_{v_{11}} h^{(-v)}$$

Parameters:	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]

<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]	
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]	
^α n∶ rake angle [°]	K_{u} : cutting pressure parallel to rake face	
<i>i</i> : helix angle [°]	K_{V} : cutting pressure normal to rake face	
^η : chip flow angle [°]	<i>K_{u1.1}</i> : Coefficient parallel to rake face	
<i>u:</i> parallel to rake face chip thickness order	<i>K_{v1.1}</i> : Coefficient normal to rake face	
<i>v:</i> normal to rake face chip thickness order		

2.1.2.1.2.7 Rake face model [Metric]

manufacturing automation laboratories

Rake face force model

Equations:

$$dF_u = K_u h \, dz$$

$$dF_{v} = K_{v}h \, dz$$

$$\begin{bmatrix} dF_r \\ dF_t \\ dF_a \end{bmatrix} = [A] \begin{bmatrix} dF_u \\ dF_v \end{bmatrix} + dS \begin{bmatrix} K_{re} \\ K_{te} \\ K_{ae} \end{bmatrix}$$

Parameters:

____]

46

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dF_u</i> : differential friction force [N]	<i>K_u</i> : Friction coefficient on the rake face [N/mm²]
<i>dF_V</i> : differential normal force [N]	<i>K_V</i> : Normal coefficient on the rake face [N/mm²]
<i>dz</i> : differential axial depth of cut [mm]	<i>h</i> : chip thickness [mm]
<i>dS</i> : differential cutting edge length [mm]	<i>A</i> : Transformation matrix between the rake face CS and RTA CS

2.1.2.1.3 Limits

CUTPRO

Limits

The "Limits" tab displays the limits of the material characterization given in either unit system:

imits	
Chip Thickness (min)	0.050 mm
Chip Thickness (max)	0.300 mm
Cutting Speed (min)	500.000 m/min
Cutting Speed (max)	3000.000 m/min
Rake Angle (min)	0 °
Rake Angle (max)	16 °
imits	
Chip Thickness (min)	0.000 in
Chip Thickness (max)	0.004 in
Cutting Speed (min)	9.843 ft/min
Cutting Speed (max)	154.199 ft/min
Rake Angle (min)	2 °

	Metric	Imperial
Chip	mm	in
Thickness		
Cutting Speed	m/min	ft/min
Rake Angle	0	0

*Units may be toggled at any time in the Workpiece Material Manager

Purpose

The "Limits" section is used for defining the limits of user-defined material characterization models, or for viewing the limits of provided material characterization models. These values determine the conditions in which the material was characterized. For example, in the above test, perhaps the following was done:

Chip Thickness: 0.050 mm, 0.100 mm, 0.150 mm, 0.200 mm, 0.250 mm, 0.300 mm. Rake Angles: 0°, 4°, 8°, 12°, 16°. Cutting Speeds: 500 m/min, 1000 m/min, 1500 m/min, 2000 m/min, 2500 m/min, 3000 m/min

This allows the material to be defined for various feeds, rake angles and speeds. As a result, you can expect fully accurate simulations within these min and max ranges. If your simulation is out of range, for example rake 18, you can still expect to see a good accuracy. It is up to the user to decide how suitable the material limits are based on the application. If you require assistance on this topic, you can contact <u>MAL's support</u> team within CutPro.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.1.4 Material standards

manufacturing automation laboratories

CUTPRO

Material standards

The *"Material standards"* tab displays the material standards which the selected material belongs in, and changes the name of the material based on the selected standard. The following standards are available:

Mate	erial Standards					
▼	DIN-nr 🗹 Wnr. 🗹 BS 🗹 EN 🗹 SAE 🗹 AISI SS 🗹 AFNOR 🗹 UNI 🗹 JIS 🗹 UNF 🗹 CMC					
DIN-nr : Wnr. : BS:	DIN-nr : German Institute for Standardization # (Deutsches Institut für Normung e.V.) Wnr. : German material number (Werkstoffnummer) BS: British Standards					
EN: SAE:	European Committee for Standardization Society of Automotive Engineers					
AISI: SS:	American Iron and Steel Institute Swedish Standards Institute (Svensk Standard Standardisering)					

AFNOR: French national organization for standardization (Association Française de Normalisation)

- UNI: Italian National Standards Institute (Ente Nazionale Italiano di Unificazione)
- JIS: Japanese Industrial Standards (日本工業規格)
- UNE: Spanish Material Standards (Una Norma Española)
- CMC: Coromant Material Classification (Sandvik)

Purpose

The "Material standards" section is simply used to filter materials by standards. Not every material is available in all standards, for example:

DIN X5CrNiCuNb16-4 [352]	Material Standards	
CMC 05.12/15.12 [352]		
DIN C53G [241]	🕅 DIN-nr 📝 Wnr. 📝 BS 📝 EN 📝 SAE 📝 AISI	
DIN AlSi5Cu3Mn [175]	SS AFNOR UNI JIS UNF CMC	
Alumec 89 [175] 🔹 👻		

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2 Tool Editor

Tool Editor 7 - Overview

Home

Tools

Home

Tools

Uorkpiece

ToolEditor

Check for

updates

Manager

Settings

The Tool Editor currently contains two ways to construct tools:

- Milling Cutters (Graphical interface for building tools easily)
- Receptance Coupling (Allows FRF coupling to construct a tool)

There are three Navigation tabs within the Tool Editor

- File Tab (Book Icon): Used is used for creating, opening and saving tools
- Home Tab: Used for editing tool geometry properties and managing tool files
- View Tab: Used for toggling view settings on/off

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.1.2.2.1 Milling Cutter

Tool Editor 7 - Milling Cutter

There are 5 possible Milling tool types:

- Flat
- Ball-end
- Tapered ball-end
- General
- Indexed

Once the desired tool type is selected, you may begin entering parameters.

2.1.2.2.1.1 Flat

CUTPRO

Tool Builder 7 - Flat

The following options are available for a Flat tool:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.1.2 Ball-end

manufacturing automation laboratories CUTPRO

Tool Builder 7 - Ball-end

The following options are available for a Ball-end tool:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.1.3 Tapered ball-end

manufacturing automation laboratories CUTPRO

Tool Builder 7 - Tapered ball-end

The following options are available for a Tapered ball-end tool:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.1.4 General

manufacturing automation laboratories CUTPRO

Tool Builder 7 - General

The following options are available for a General tool:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.1.5 Indexed

Tool Builder 7 - Indexed

Flutes 4 Number of flutes (1-50) Variable pitch ۲ Parameters Insert Shape Insert Orientation Angles 12.000 ° Type A - Parallelogram 85° Axial rake (yp) Radial rake (vf) 8.000 ° Length (L) 12.000 mm 75.000 ° Cutting edge (kr) Width (W) 6.800 mm 0.000 * 0.000 ° Lag Clearance angle Nose angle (E) 85.000 * 0.800 mm Corner radius (R) 01 Tool Wiper flat 0.000 mm Feed Tool diameter 19.050 mm Level count Copy to all 1

The following options are available for an Indexed tool:

Check the Indexable cutter properties/definitions page for further details

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.2 Receptance Coupling

CUTPRO

Tool Editor 7 - Receptance Coupling

Receptance Coupling allows the user to perform less tap test measurements, and determine the predicted FRF of several cutting tools & holders at their tip.

This is done by decoupling the spindle from the holder & tool interface connection, as shown below.

We are then able to create predicted tool-tip FRFs by inputting holder and tool geometries, along with their material properties.

S 🗁 🕶 📙 🖷 🔻				
Home View				
New	Milling Cutter) Metric	nperial
Dpen Open				
Save Save As	Ball end Flat end	Tapered ball end	General end	Indexed
Recent About				
Exit	Tool Coupling			

How to use Receptance Coupling

Step 1: Use the Tap Testing module or similar software and measure 3 or 6 FRFs.

Step 2: Use the FRF measurements to create a new spindle definition.

Step 3: Enter your <u>holder geometry</u> and <u>tool geometry</u> and save them, or load existing ones.

Step 4: Run coupling and save the predicted tool tip FRF with the direction (X and/or Y).

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.1 Spindle tap testing

manufacturing automation laboratories

CUTPRO

Receptance Coupling - Spindle tap testing

Before performing a spindle tap test, first we must consider which directions of the machine we wish to measure. In the case of milling, there are two main axes in which the tool travels: The X and Y axes of the machine tool. In order to accurately predict stability (how deep/wide can i cut), forces (how aggressively can I cut) and so on, we must measure these two axes. A good rule of thumb is to always measure both the X and Y axes of the spindle.

Why do we need both axes?

The reason for these two measurements is because the structure of the machine, including the spindle itself, are not 100% symmetrical in the X and Y axes. This means that one direction, X or Y, will be more rigid or flexible than the other. If you have a machine which is relatively symmetric, you may wish to only measure one direction, such as X for example.

What else do we need for tap testing?

A tool holder (This will be subtracted from the measurements) Remember to note the tool holder model

Here are the three options you may choose for Spindle tap testing, figures for each test are shown below: For assistance with tap testing, please refer to the <u>Tap Testing Module</u>.

- Tap test Machine X only and export 3 FRFs (H11X.frf H12X.frf H22X.frf)
- Tap test Machine Y only and export 3 FRFs (H11Y.frf H12Y.frf H22Y.frf)
- Tap test both Machine X and Machine Y and export 6 FRFs (H11X.frf H12X.frf H22X.frf) + (H11Y.frf H12Y.frf H22Y.frf)

H22

Strike Hammer at Point 2 - Attach Acc	celerometer at Point 2
This measurement is done just below th	e v-flange of the tool holder
	 The hammer impact point and accelerometer attachment point must be collinear to one another. The hammer impact point and accelerometer attachment point must be perpendicular to the spindle axis The hammer impact point is just below the v-flange of the tool holder (Point 2) The accelerometer attachment point is just below the v- flange of the tool holder (Point 2)

H12

H11

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.2.2 New spindle definition

Receptance Coupling - New spindle definition

Requirements

- H11, H12 and H22 measurements (Spindle tap testing)
- Exported FRFs of the above measurements (*.frf)
- Tool holder geometry from the tap tests

Creating a new spindle definition

Under the new Tool coupling document, click on 'New Spindle' from the Spindle section.

Notice that a new tab called 'Spindle editor' has been opened. Enter or load your tool holder geometry, and load your FRFs.

When you are finished, click the 'Save' button shown in the top left under RC. This will save your spindle definition as an (*.rcm) file.

You can then load your spindle the next time by selecting the appropriate (*.rcm) file and clicking "Load". Notice that the current spindle is highlighted in green.

	Current spindle: MySpindle.rcm	
	Filename	Modified
MySpindle.rcm		2015-12-31

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.2.2.3 Holder/Tool definitions

Receptance Coupling - Holder/Tool definitions

Requirements

- All holder and tool geometries
- The tool holder must be a shrink-fit holder
- The cutting tool must be solid carbide or steel

Creating a new Holder or Tool definition

Enter the geometries of your holder or tool, and click the blue forward/right arrow for each.

CutPro Modules

Notice a list of files for your **holders (*.rch)** and your **tools (*.rct)**. Here you can save you can <u>save or</u> <u>load</u> these files. Click the <u>blue return/left arrow</u> to go back.

Tool			۲
	Filename	Modified	
	Tool1.rct	2015-11-12	
<			>
	Save Load Delete Newsnindle		
	Contraction of the spinale		

2.1.2.2.2.4 Run coupling

Receptance Coupling - Run coupling

Requirements

- (*.rcm) file for Spindle tap test
- (*.rch) file or unsaved input geometry for Holder
- (*.rct) file or unsaved input geometry for Tool

Once the Spindle, Holder and Tool have been defined, click on 'Run Coupling' in the top left menu

After results generation, notice the predicted tooltip FRF appear on the right, and a 'Save FRF' button along with it.

Once the tooltip FRF has been saved, you may use it within CutPro just like any other CutPro FRF. Please <u>contact us</u> for further information in regards to Receptance Coupling.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.2.3 Check for Updates

Check for updates S - Overview

Click on the 'Check for updates' button to see if a new CutPro version has been released:

1) If a new version isn't available

CutPro will tell you your current version and tell you that it's up-to-date.

2) If a new version is available

CutPro will show an update prompt along with the update contents.

3) If you cannot update at all

Please <u>contact us</u> if the update button is not visible in CutPro although you have an older version.

This likely means that your Updates have expired.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.1.3 Simulation Modes

manufacturing automation laboratories

Simulation Modes 🔤 - Overview

Inside of the active Workspace, the user can define many simulations, and also various simulation modes may be selected:

- Analytical stability lobes
- Milling process simulation
- <u>Stability lobes in time domain</u>
- Optimize variable pitch
- Cutting coefficient identification

Useful Functions for Simulation

- + Add: Add a new simulation in the active workspace
- **Remove**: Removes selected simulation in the active workspace
- **Duplicate**: Duplicates selected simulation in the active workspace

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.3.1 Analytical stability lobes

CUTPRO

CUTPRO

Analytical stability lobes

What is this?

Analytical stability lobes provide the user with what is called a "Stability Pocket", which denotes a productive location for chatter-free cutting:

This is a fast analytical stability lobe prediction solved in a frequency domain. It generates the stability lobes by indicating the axial/radial depth of cut and spindle speeds for a fixed width of cut.

Additional Features:

Process damping (Available for certain materials only)

Heat resistant materials such as titanium and steel alloys that are frequently used in thin walled components can only be cut at low cutting speeds. When machining these materials at low speeds, it is known that the chatter stability limit

increases due to additional damping caused by the process.

This phenomenon is called process damping. Due to the sharpness of the cutting edge, part of the chip is forced to go under the tool and causes interference on the tool clearance flank.

Radial Stability (Available for Down-Milling and Up-Milling)

Simulates the potential depth of cut versus width of cut.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.3.2 Milling process simulation

CUTPRO

Milling process simulation
Workspace Tree		
Milling process simula	tion: CutPro 🔹	
Properties		
Simulation <mode></mode>		
▲ General		
Name	CutPro	
Mode	Milling process simulation	
Animation	Analytical stability lobes	
Save animation data	Milling process simulation	
	Stability lobes in time domain	
	Optimize variable pitch	
	Cutting coefficient identification	
Mode Milling process simulation Simulate cutting forces, tool vi and spindle bending moment	ibrations, surface finish, spindle power in a single time domain	

What is this?

Milling process simulation provides the user with expected cutting forces which may be used to optimize cutting:

For a given cutter geometry, cutting conditions (depth, width, speed, feed, cutter, material, structural dynamic parameters of the machine and work piece), cutting forces, chip load, vibrations, torque, bending moment at a spindle location indicated by the length from the tool tip, surface finish, and animation of chip removal are simulated.

2.1.3.3 Stability lobes in time domain

automation laboratories

CUTPRO

Stability lobes in time domain

Workspace Tree		
Workspace: CutPro		
⊿ Stability lobes in	time domain: CutPro	
Properties		
Simulation <mode></mode>		
General		
Name	CutPro	
Mode	Stability lobes in time domain 🔽	
	Analytical stability lobes	
	Milling process simulation	
	Stability lobes in time domain	
	Optimize variable pitch	
	Cutting coefficient identification	
Mode		
Stability lobes in time do Simulate stability lobes w complicated cutter	omain vithin a narrow speed range for a	

What is this?

Stability lobes in time domain provide the user with more accurate resutls for a "Stability Pocket", which denotes a productive location for chatter-free cutting:

This simulates the stability lobes using semi-discrete simulations, and takes a long time. We recommend that you use the analytical stability lobe modes first due to it's speed. However, if you wish to simulate stability lobes within a narrow speed range for a complicated cutter, you should use this option as it is more accurate.

Additional Features:

Process damping (Available for certain materials only)

The heat resistant materials such as titanium and steel alloys that are frequently used in thin walled components can only be cut at low cutting speeds.

When machining these materials at low speeds, it is known that the chatter stability limit increases due to additional damping caused by the process.

This phenomenon is called process damping. Due to the sharpness of the cutting edge, part of the chip is forced to go under the tool and causes interference on the tool clearance flank.

CutPro Modules

Radial Stability (Available for Down-Milling and Up-Milling)

Simulates the potential depth of cut versus width of cut.

Pro	operties	
C	utting conditions	
4	General	
	Spindle direction	Clockwise 🔽
	Milling mode	Up-milling
	Feedrate	0.200 mm/flute
	Radial width of cut (b)	9.000 mm
4	Radial stability	
	Enabled	\checkmark
	Spindle speed	8650 RPM

2.1.3.4 Optimize variable pitch

manufacturing automation laboratories

Optimize variable pitch

Workspace Tree		
Optimize variable pitch:	CutPro 🗸	
Properties		
Simulation <mode></mode>		
▲ General		
Name	CutPro	
Mode	Optimize variable pitch	
	Analytical stability lobes	
	Milling process simulation	
	Stability lobes in time domain	
	Optimize variable pitch	
	Cutting coefficient identification	
Mode		
Optimize variable pitch Calculate pitch distribution at a s number of flutes	pecific spindle speed for a given	

What is this?

Optimum variable pitch provides the user with a simulation of performance for

CUTPRO

a variable pitch cutter:

This automatically calculates the pitch distribution at a specific spindle speed for a given number of flute.

The user can then select practical combinations from the graphical output.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.3.5 Cutting coefficient identification

CUTPRO

Cutting coefficient identification

Workspace Tree		
Cutting coefficient id	entification: CutPro	
Properties		
Simulation <mode></mode>		
 General 		
Name	CutPro	
Mode	Cutting coefficient identificatic 🔽	
	Analytical stability lobes	
	Milling process simulation	
	Stability lobes in time domain	
	Optimize variable pitch	
	Cutting coefficient identification	
Mode		
Cutting coefficient identificat Identify the cutting coefficient forces	tion ts based on defining X, Y and Z cutting	

What is this?

Cutting coefficient identification provides the user with expected cutting forces for a material:

Note that CutPro has a material database which may already contain the material of interest.

If one does not know the cutting constants of a material-cutter combination, milling experiments are conducted.

The cutting forces in x,y and z are then measured, and provided to this simulation. Finally, the cutting coefficients are identified for the material.

2.1.4 Machine & Tool

CUTPRO

Machine & Tool **P** - Overview

Here the user may select/edit properties related to the machine & tool, such as:

- <u>Tool geometry</u> (Machine and Tool tab)
- Structural flexibility
- Edit tool

2.1.4.1 Tool Geometry

CUTPRO

Machine & Tool *P* - Tool Geometry

In **CUTPRO** milling there are five types of cutters which can be simulated:

- Flat
- Ball-end

- Tapered ball-end
- <u>General</u>
- Indexable

Check the Cutter properties/definitions page for further details

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1 Cutter properties/definitions

manufacturing automation laboratories

CUTPRO

Cutter properties/definitions

- Geometry types
- <u>General tool geometry parameters figure</u>
- Number of flutes
- Pitch
- <u>Run-out</u>
- Run-out file editor
- <u>Run-out example</u>
- Serration
- <u>Serration file editor</u>
- Serration example
- Length
- First bearing position
- Lead distance
- Lead/Helix angle
- <u>Rake/Relief angle</u>
- Taper angle
- Tip angle

<u>Corner radius</u>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.1 Geometry types

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.2 General tool geometry parameters figure

CUTPRO

General tool geometry parameters figure

2.1.4.1.1.3 Number of flutes

Number of flutes

The number of teeth (flutes) on the cutter. The pitch angles will be the same for uniform pitch cutters.

The pitch angles are obtained using **(360°/number of flutes)**. For non-uniform pitch the pitch angles must be entered by user.

The pitch angles must be bigger than zero and the summation of all pitch angles must be **360**°.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.)

2.1.4.1.1.4 Pitch

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.5 Run-out

Run-out

Run-outs are defined as deviations from the ideal/design coordinates of the cutter. By checking the run-out option the user can design very complex, irregular cutter geometry. In this case, the user digitizes the cutter at small increments, and provides the digitized envelope in a run-out file.

CUTPRO

Pr	operties	
C	utter Geometry	
4	Parameter	
	Diameter (D)	19.050 mm
	Length (L)	150.000 mm
	First bearing position	200.000 mm
	Relief angle	5.000 °
	Rake angle	5.000 °
4	Runouts and serration	
	Runouts data	Disabled
	Serration data	Disabled

Click on the file tab to access runouts data:

--- File Tab: Quick access to file management

- Selecting and editing a run-out file
- Run-out Example

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.6 Run-out file editor

CUTPRO

Run-out file editor

In a run-out file, the user defines deviations of each cutter tooth from its ideal

geometry, at a series of axial locations along the depth-of-cut. The run-out file editor consists of a table. The first column lists the axial locations at which deviations have been measured; the other columns correspond to the deviations for each cutter tooth.

Level 🔺	1	2	3	4
0.000000	22.500000	11.000000	-5.500000	0.00000
10.000000	20,000000	5.500000	-6.000000	1.00000
21.500000	15.500000	0.000000	-6.000000	5.00000
35.000000	14.500000	-2.000000	-7.500000	5.00000
43,700000	13.000000	-5.500000	-7.500000	4.00000

File

Import Open an existing run-out file.

Export Save the currently open run-out file under the same name.

Exit Exit the Run-out Editor window.

Edit (Right-click)

Cut Cut the selected range of cells.

Copy Copy the selected range of cells.

Paste Paste the clipboard contents onto the table at the selected place.

Delete the selected range of cells.

Insert Row Insert an empty row at the selected place.

Delet e Delete the selected row. Row

CutPro Modules

Units (<u>Changed in Workspace</u>)

Metric Levels are in [*mm*], runout values are in [*µm*]

Imperial Levels are in [*inch*], runout values are in [*mils/thou*]

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.7 Run-out example

CUTPRO

Run-out example

The run-out has been measured for the following cutter:

Level		1	2	3	4
0.000000)	22.500000	11.000000	-5.500000	0.000000
10.00000	0	20,000000	5.500000	-6.000000	1,000000
21.50000	0	15.500000	0.000000	-6.000000	5.00000
35.00000	0	14.500000	-2.000000	-7.500000	5.000000
43,70000	0	13.000000	-5.500000	-7.500000	4.000000

The corresponding run-out file will be entered as follows:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.8 Serration

CUTPRO

Serration

Serrations are defined as wavy profiles along the cutting edge.

They are designed to have a phase shift from one flute to another to prevent unstable cutting.

Pr	operties		
C	utter Geometry		
4	Parameter		
	Diameter (D)	19.050 mm	
	Length (L)	150.000 mm	
	First bearing position	200.000 mm	
	Relief angle	5.000 °	
Rake angle		5.000 °	
4	Runouts and serration		
	Runouts data	Disabled	•••
	Serration data	Disabled	

Click on the file tab to access serration data:

--- File Tab: Quick access to file management

- <u>Selecting and editing a serration file</u>
- Serration Example

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.9 Serration file editor

CUTPRO

Serration file editor

In a serration file, the user defines deviations of a cutter tooth serration from its geometry.

The serration file editor consists of a table: The first column lists the axial locations at which deviations have been measured; the other column corresponds to the outward deviations for each point of measurement.

Serration	Editor		×
Use :	serrated cutter	profile	
	Х	Y	
*	Click here to	add a new row	
	0.000000	0.000000	
	0.191304	0.001882	0.200
	0.356522	0.017135	
	0.495652	0.034011	
	0.769249	0.084452	
	1.050699	0.135016	
	1.772195	0.272329	X = 3.351607
* All va	lues are in mm		0.000 3.000 Y = 0.009318 6.000
Boundar	ry condition at :	start 0.000	
Bounda	ary condition at	end 0.000	Flute Number 1 📑
Apply	/ Cancel		

File

Copy Copy to all

× Delete

Import Open an existing serration file.

Export Save the currently open serration file under the same name.

Exit Exit the Serration Editor window.

Edit (Right-click)

Cut Cut the selected range of cells.

Copy Copy the selected range of cells.

Paste the clipboard contents onto the table at the selected place.

Cut Delet Delete the selected range of cells.

Insert Row Insert an empty row at the selected place.

Delet

e Delete the selected row. *Row*

Units (Changed in Workspace)

Metric	Values are in [<i>mm</i>]
Imperial	Values are in [inch]

2.1.4.1.1.10 Serration example

CUTPRO

Serration example

A serration has been measured for the following cutter on one of its serrated profiles:

The corresponding serration file will be entered as follows:

V Use	serrated cutter	profile	
	Х	Y	
*	Click here to	add a new row	
	0.000000	0.000000 🔺	
	0.191304	0.001882	0.200 -
	0.356522	0.017135	
	0.495652	0.034011	
	0.769249	0.084452	
	1.050699	0.135016	0000
	1.772195	0.272329	X = 3.351607
* All va	lues are in mm		0.000 3.000 Y = 0.009318 6.000
Bounda	ry condition at s	tart 0.000	
Bounda	ary condition at	end 0.000	Flute Number 1

2.1.4.1.1.11 Length

Length

The Length parameter is defined as the length from the tool tip to the tool holder shank face.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.12 First bearing position

manufacturing

automation

The first bearing position parameter is defined as the distance from the tool tip to the first bearing on the spindle. The first bearing on the spindle

is the bearing located closest to the tool. Measure/retrieve this dimension down to the point where the tool holder face meets the spindle. This

dimension can be called A, and will remain constant regardless of which tool is in the machine. The remaining distance, B, is the distance from

the tool holder connection interface to the tool's tip. We can then say L = A + B, where A is constant and B is dependent on the cutting tool/holder.

CUTPRO

2.1.4.1.1.13 Lead distance

CUTPRO

Taper angle

Flute height in Z (axial) direction for one step: see lead dimension (io)

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.14 Lead/Helix angle

manufacturing automation laboratories CUTPRO

Flute type figure

2.1.4.1.1.15 Rake/Relief angle

Relief angle

2.1.4.1.1.16 Taper angle

CUTPRO

Taper angle

See (β) symbol in figure

2.1.4.1.1.17 Tip angle

CUTPRO

Taper angle

See (a) symbol in figure

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.1.18 Corner radius

See (R) symbol in figure

2.1.4.1.2 Flat

Flat Endmill

The following parameters define flat endmills:

Properties			
Cutter Properties			
	General		
	Cutter Type	Flat end	
	Number of Flutes	4	
4	Pitch angle		
	Uniform	\checkmark	
	Angle	90.000 °	
4	Helix angle		
	Uniform	\checkmark	
	Angle	30.000 °	
4	Parameter		
	Diameter (D)	19.050 mm	
	Length (L)	150.000 mm	
	First bearing position	200.000 mm	
	Relief angle	5.000 °	
	Rake angle	5.000 °	
	Corner radius (R)	0.000 mm	
4	Runouts and serration		_
	Runouts data	Disabled	
	Serration data	Disabled	
De	emonstration		
	L		
L.			
12			
D			

Check the Cutter properties/definitions page for further details

NOTE: Available parameters are dependent on simulation type

CUTPRO

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.3 Ball-end

Machine & Tool *P* - Ball-end endmill

Ball-end Endmill

The following parameters define an ball-end endmill:

Properties		
Cutter Properties		
General		
Cutter Type	Ball end	
Number of Flutes	4	
 Pitch angle 		
Uniform	\checkmark	
Angle	90.000 °	
Helix angle		
Uniform	\checkmark	
Angle	30.000 °	
Parameter		
Diameter (D)	19.050 mm	
Relief angle	5.000 °	
Rake angle	5.000 °	

Check the Cutter properties/definitions page for further details

NOTE: Available parameters are dependent on simulation type

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.4 Tapered ball-end

manufacturing automation laboratories

CUTPRO

Machine & Tool 🎤 - Tapered ball-end endmill

Tapered ball-end Endmill

The following parameters define an tapered ball-end endmill:

CutPro Modules

Check the Cutter properties/definitions page for further details

NOTE: Available parameters are dependent on simulation type

2.1.4.1.5 General

Machine & Tool 🎤 - Cutter geometry 🛛

General Endmill

All parameters can be used to define an general endmill:

Properties			
Cutter Properties			
4	General		
	Cutter Type	General endmill	\mathbf{v}
	Number of Flutes	4	
4	Pitch angle		
	Uniform	\checkmark	
	Angle	90.000 °	
4	Helix angle		
	Uniform	\checkmark	
	Angle	30.000 °	
4	Parameter		
	Flute type	Constant Helix	V
	Diameter (D)	19.050 mm	
	Length (L)	150.000 mm	
	First bearing position	200.000 mm	
	Relief angle	5.000 °	
	Rake angle	5.000 °	
	X radius center (Rr)	4.762 mm	
	Z radius center (Rz)	4.763 mm	
	Corner radius (R)	0.000 mm	
	Flute height (h)	9.525 mm	
	Tip angle (α)	0.000 °	
	Taper angle (β)	1.000 °	
4	Runouts and serration		
	Runouts data	Disabled	•••
	Serration data	Disabled	
Error 1018: $R = 0.000$ is smaller than the absolute value of $Rz = 4.763$.			
Diesse change P or Pr			
Please change x or xz.			

Check the Cutter properties/definitions page for further details

NOTE: Available parameters are dependent on simulation type

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.1.6 Indexable

Machine & Tool 🎤 - Cutter geometry 💚

Indexable Cutter

The following parameters define an indexable endmill:

CUTPRO

Indexable cutter parameters:

# of flutes	Same as number of inserts on each level of the cutter
Level Count	The number of insert levels along the height of the tool
Current level	The current selected level (The selected level will turn blue colored)
Insert shape	The currently selected insert on the current level (The selected insert will be displayed on the right hand side)

Insert orientation parameters:

I = nath(I)	The length of the insert, as displayed
Lengin (L)	above.

Corner The corner radius of the insert, as radius (R) displayed above.

Tool diameter	The diameter of the cutter	RAKE	
Clearance angle (Relief)	Relief angle of the cutting insert.		:L
Radial rake angle	Rake angle of the cutting insert.		
Axial rake angle	Axial rake angle of the currently selected insert.		4
<i>Cutting edge angle (Lead angle)</i>	Cutting edge angle of the currently selected insert.		
Lag angle	Lag angle of the currently selected insert. This is incremental from the previous insert center on the same level.		

IEF ANGLE

Other commands

The following commands are also available under indexable cutter geometry:

Insert Type	Displays various insert types to select from.
Copy to all	Copies the currently selected insert and its orientation parameters to all levels of the cutter.
Apply	Applies indexed cutter parameters and closes window
Cancel	Closes indexed cutter window without making changes

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)
2.1.4.2 Structural flexibility

CUTPRO

Machine & Tool 🎤 - Structural flexibility 💚

Machine & Tool simulation models available:

- Rigid model
- Structural vibrations model
- Static deflections model

Workspace Tree	
🔺 🔑 Machine and Tool	
📦 Cutter Geometry	
📦 Structural Flexibility	Ψ
Properties	
Structural Flexibility <model></model>	
 General 	
Model	Static Deflections
	Rigid
	Structural Vibrations
	Static Deflections

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.2.1 Rigid model

Structural flexibility • - Rigid machine & tool model

- Effects of machine & tool vibrations are not included in the simulation
- Machine/cutter is assumed rigid
- Simulation will be under static conditions.

Chip models

- Exact kinematics (chip thickness is calculated using discretization of the surface)
- Approximation (*chip load calculation using sinusoidal approximation*)

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.2.2 Structural vibrations model

manufacturing automation laboratories

CUTPRO

Structural flexibility Structural vibrations machine & tool

Machine & tool has structural flexibility

Dynamics data

Measured FRF (for analytical stability lobes & variable pitch simulations only)

X, *Y* and *Z* frf file Uses a file containing real and imaginary parts of the measured frequency response function. These files are created using the <u>MALTF</u> module or similar.

Modal/residue data files

X V and 7 modal/residue	Uses a file containing modal parameters. These modal
	parameter files are created using the Modal Analysis
me	program.

Vibration parameters

This uses the following dynamic parameters. It only allows for a single dominant mode in each of the X- and Y-directions.

Natural frequency	Natural frequency of the system in [Hz]
Damping ratio	Damping ratio for that mode
Stiffness	Stiffness of the system [N/m]

Transfer function values are calculated using following equation in frequency domain:

$$\Phi = \frac{\omega_n^2 k}{\omega_n^2 - \omega^2 + i \, 2\zeta \omega_n \omega}$$

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.2.2.1 Measured FRF File

manufacturing automation laboratories

CUTPRO

Structural flexibility • - Measured FRF File

The structural flexibility of the machine & tool structure must be used in some simulation cases.

It is particularly needed for determining the chatter free machining stability of the system.

Introduction to FRF Measurements

Using a modal impact hammer as an input sensor, and an accelerometer (for example) as an output sensor, we can impact the

system to take what is called a transfer function measurement. The transfer function tells us the relationship between the input and

output, which in this case is the relationship between Force and Deflection over a frequency range. This is also known as an FRF,

a Frequency Response Function, which tells us how much the system will deflect at certain frequencies. Sometimes you will need to

manually filter out certainly frequencies of interest and create a custom-fitted curve; this is known as modal analysis.

The supplied module <u>MALTF</u> is used for this measurement, please refer to the <u>MALTF</u> manual for further information.

Also refer to Modal Analysis for modifying the measured FRF.

If you require further assistance in this technical area, please contact our <u>Support</u> <u>Helpdesk</u>.

FRF File Details (2015+)

In the latest version of FRF files, you will notice that there are 3 columns of collected data.

Row 1 represents a Frequency in Hz (as shown in columns 4 and 5) Row 2 represents a Real Part of the FRF in m/N (as shown in columns 6 and 7) Row 3 represents a Imaginary Part of the FRF in m/N (as shown in columns 8 and 9) Older FRFs from MALTF (Before 2015) will not contain units in the file, and will be m/ N if metric or in/Ibf if imperial.

🗎 MET	_Gxx.fr	f 🗵							
1	101	1.182750E-006	-2.252787E-008	Freq	Hz	Real	m,∕N	Imag	m,∕N
2	102	1.180777E-06	-2.281263E-08						
3	103	1.17893E-06 -2.3	309951E-08						
4	104	1.177204E-06	-2.338855E-08						
5	105	1.175596E-06	-2.367978E-08						
6	106	1.174103E-06	-2.397325E-08						
7	107	1.17272E-06 -2.4	126899E-08						
8	108	1.171446E-06	-2.456704E-08						
9	109	1.170277E-06	-2.486745E-08						
10	110	1.16921E-06 -2.5	517024E-08						
11	111	1.168243E-06	-2.547548E-08						
12	112	1.167374E-06	-2.578319E-08						
13	113	1.166599E-06	-2.609343E-08						
14	114	1.165916E-06	-2.640624E-08						
15	115	1.165325E-06	-2.672165E-08						
16	116	1.164821E-06	-2.703973E-08						
17	117	1.164404E-06	-2.736051E-08						
18	118	1.164072E-06	-2.768404E-08						
19	119	1.163822E-06	-2.801037E-08						
20	120	1.163654E-06	-2.833956E-08						
21	121	1.163565E-06	-2.867165E-08						
22	122	1.163555E-06	-2.900669E-08						
23	123	1.163621E-06	-2.934473E-08						
24	124	1.163762E-06	-2.968583E-08						
25	125	1.163977E-06	-3.003005E-08						

Using the Interface

There are 3 axes where FRF files can be applied. These will depend on the type of operation.

In the case of milling, the Axial axis (spindle) is far far more rigid than than the Feed and Normal axes.

CutPro sets it to rigid by default for this reason.

sim 1 Measured FRF files ×	
Feed Rigid	
Auto/Metric MET_HMC_d20mm_f4_X.frf [1:5000:1 Hz] Unit m/N Gain 1.000 FRF Type Displacement	
Normal 🗌 Rigid	
Auto/Metric MET_HMC_d20mm_f4_Y.frf [1:5000:1 Hz] ••• Unit m/N Gain 1.000 FRF Type Displacement •••	
Axial 🗹 Rigid	
Auto/Metric C:\ProgramData\MAL\CutPro\Resource\MET_MachineZ.frf [1:2000:1 Hz] Unit m/N Gain 1.000 FRF Type Displacement	
Frequency Range 250.000 Hz to 5000.000 Hz Plot	
Apply Cancel	

Units: Newer FRF files (2015) contain their unit system within the file and will display Auto.

However, if you are using older files (before 2015) you must manually define the file unit type as shown above.

Gain: The gain value is used to stretch/shrink the Y axis values of the FRF file, or swap directions by adding a -1.0.

FRF Type: This is the FRF file type which is either a Displacement or Acceleration type FRF (selected in MALTF).

Frequency Range: Used to cut off the lower range and higher range of the raw FRF measurement.

Plot: Displays the FRF plots based on the input files and settings.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.2.2.2 Modal/Residue data files

CUTPRO

Structural flexibility • Modal/Residue data files

The structural flexibility of the machine & tool structure must be used in some simulation cases.

It is particularly needed for determining the chatter free machining stability of the system.

Introduction to FRF Measurements and Modal/Residue data files

The transfer function tells us the relationship between the input and output, which in this case is the relationship between Force and

Deflection over a frequency range. This is also known as an FRF, a Frequency Response Function, which tells us how much the system

will deflect at certain frequencies. Sometimes you will need to manually filter out certainly frequencies of interest and create a

custom-fitted curve; this is known as <u>modal analysis</u>. Using a modal analysis software such as ours, you can output what is called

modal parameters. The modal parameters are stored in a (*.CMP) file

The supplied module \underline{MALTF} is used for this measurement, please refer to the \underline{MALTF} manual for further information.

Also refer to Modal Analysis for modifying the measured FRF.

If you require further assistance in this technical area, please contact our <u>Support</u> <u>Helpdesk</u>.

CMP File Details (2015+)

The CMP file consists of modal parameters. These include the number of modes fitted,

points, natural frequencies, modal stiffness, dampening ratio, locations, unit system etc.

Older CMPs from Modal Analysis (Before 2015) will not contain the unit system in the file.

The "Metric" or "Imperial" tag will be missing, please refer to the <u>modal analysis units</u> page

for full details on this topic.

🗎 MET_	Gxy.cmp 🛛	
1	MODES	1
2	PNTS	1
3	REALM	1
4	WN 369.	153037852127
5	ZETA	8.85693947383282E-03
6	MASS	-7.46255401869783
7	STIFK	-40147581.1191804
8	LOCNS	0
9	MODSH	-0.3660634
10	METRIC	
11		

Using the Interface

There are 3 axes where CMP files can be applied. These will depend on the type of operation.

In the case of milling, the Axial axis (spindle) is far far more rigid than than the Feed and Normal axes.

CutPro sets it to rigid by default for this reason.

sim 1 Modal/Residue data files	×
Feed Rigid	
Auto/Metric MET_HMC_d20mm_f4_X.cmp	•••
	Unit system Metric
Normal 🗌 Rigid	
Auto/Metric MET_HMC_d20mm_f4_Y.cmp	
	Unit system Metric
Axial 🗹 Rigid	
Auto/Metric MET_MachineZ.cmp	
	Unit system Metric
Apply Cancel Plot	

Units: Newer CMP files (2015) contain their unit system within the file and will display Auto.

However, if you are using older files (before 2015) you must manually define the file unit type as shown above.

Plot: Displays the CMP plots based on the input files and settings.

2.1.4.2.2.3 Vibration parameters

manufacturing automation laboratories

CUTPRO

Structural flexibility Vibration parameters

The structural flexibility of the machine & tool structure must be used in some simulation cases.

It is particularly needed for determining the chatter free machining stability of the system.

Introduction to FRF Measurements and Vibration parameters

The transfer function tells us the relationship between the input and output, which in this case is the relationship between Force and

Deflection over a frequency range. This is also known as an FRF, a Frequency Response Function, which tells us how much the system

will deflect at certain frequencies. Sometimes you will need to manually filter out certainly frequencies of interest and create a

custom-fitted curve; this is known as <u>modal analysis</u>. Using a modal analysis software such as ours, you can output what is called

modal parameters. The modal parameters are stored in a (*.CMP) file.

Some customers use other 3rd party softwares (non-MAL) to obtain these parameters, and as a result may not have

file compatibility. In this case, customers can use the Vibration Parameters window to manually enter parameters.

The supplied module <u>MALTF</u> is used for this measurement, please refer to the <u>MALTF</u> manual for further information.

Also refer to Modal Analysis for modifying the measured FRF.

If you require further assistance in this technical area, please contact our <u>Support</u><u>Helpdesk</u>.

Vibration Parameter Details (2015+)

As mentioned above, the CMP file consists of modal parameters. These include natural frequencies, modal stiffness and dampening ratios. If you have selected Vibration Parameters, you must manually enter these values corresponding to your FRF.

Using the Interface

There are 3 axes where vibrations parameters can be applied. These will depend on the type of operation.

In the case of milling, the Axial axis (spindle) is far far more rigid than than the Feed and Normal axes.

CutPro sets it to rigid by default for this reason.

sim 1 Vibratio	on Parameters			×
Feed	Normal	Axial		
Rigid				
Natural	Frequency (Hz)	Dampi	ng Ratio	Stiffness (N/m)
*		Click	here to add a new row	
▶ 500.0		0.023		11000000.0
900.0		0.025		17000000.0
Delete	Apply Ca	ncel Plo	ot	

Natural Frequncy (Hz): Newer CMP files (2015) contain their unit system within the file and will display Auto.

However, if you are using older files (before 2015) you must manually define the file unit type as shown above.

Damping Ratio: Unitless damping ratio

Stiffness: Modal stiffness in N/m (Metric) or lbf/in (Imperial)

Plot: Displays the vibration parameters plot based on the vlues you have input.

2.1.4.2.3 Static deflections model

CUTPRO

Structural flexibility > - Static deflections machine & tool model

- Dynamic effects of machine/tool vibrations are not included
- Static deflection of cutter is included based on:
 - o Clamp Stiffness
 - o Modal Elasticity.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.4.3 Edit tool

Machine & Tool 🎤 - Edit Tool

If you wish to edit tool parameters within the Tool Editor, or wish to change to another tool, click the "Edit tool" button:

Edit Tool Window

The edit tool window is used for swapping the current tool in the project, and/or for modifying the current tool's parameters:

D:\[Documents\Machining	Tools	▼ 6	IT		
	Filename	Description	Unit sy	L		
4	Ball end			11	Flutes	
	Aaa.ctf	D = 19.05mm. Flutes = 4	Metric			
	Aad.ctf	D = 19.05mm, Flutes = 4	Metric		~	
⊿	Flat end					
	[Current Tool]	D = 19.05mm, Flutes = 4	Metric		4 ° 4	
	adf.ctf	D = 0.75in, Flutes = 4	Imperial			
d	Indexed					
	sadfsadf.ctf	D = 0.75in, Flutes = 4	Imperial		Number of flutes (1-50) 4	
۵	Tapered ball end				Variable pitch	
	Asd.ctf	D = 19.05mm, Flutes = 4	Metric			
	asdf.ctf	D = 0.75in, Flutes = 4	Imperial		Parameters	۵
					Parameters X radius center (Rz) Z radius center (Rz) Tip angle (q) Tip angle (g) Tip argle (g) Tip argle (g) Tip angle (g) Tip	
				4	Parameters Select Cancel	

2.1.5 Workpiece

Workpiece 🧼 - Overview

Under the workpiece category of simulation, the user is to select a workpiece material:

Workspace Tree		
🔺 🧼 Workpiece		-
•		
Properties		
Workpiece Material < Material>		
 General 		
Material	Aluminum 7075-T6[150]	

Once the material has been selected, parameters involving <u>structural flexibility</u> may be defined.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.5.1 Structural Flexibility

MAL	manufacturing automation laboratories	CUTPRO

Workpiece 🧼 - Structural flexibility 单

Workpiece simulation models available:

- <u>Rigid model</u>
- <u>Structural vibrations model</u>

CUTPRO

Ψ
Rigid 💌
Rigid
Structural Vibrations

2.1.5.1.1 Rigid model

Structural flexibility • - Rigid workpiece model

- Effects of workpiece vibrations are not included in the simulation
- Workpiece is assumed rigid
- Simulation will be under static conditions.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.5.1.2 Structural vibrations model

Structural flexibility • - Structural vibrations model

Workpiece has structural flexibility

Dynamics data

• Measured FRF (for analytical stability lobes & variable pitch simulation only)

C:\Prog	ramData\MAL\	CutPro\Resourc	e\HMC_	d20mm_f4_	X.frf [1:50	000:1 Hz]		••••
				Gain	1.000	FRF Type	Displacement	v
Normal	Rigid							
C:\Prog	ramData\MAL\	CutPro\Resourc	e\HMC_	d20mm_f4_	Y.frf [1:50	000:1 Hz]		••••
				Gain	1.000	FRF Type	Displacement	•
Axial	🗹 Rigid							
			e\Mach	ineZ.frf [1:2				
				Gain		FRF Type	Displacement	

• Modal/residue data files

X modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.
Y modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.

Vibration parameters

This uses the following dynamic parameters. It only allows for a single dominant mode in each of the X- and Y-directions.

Natural frequency	Natural frequency of the system in [Hz]
Damping ratio	Damping ratio for that mode
Stiffness	Stiffness of the system [N/m]

Transfer function values are calculated using following equation in frequency domain:

$$\Phi = \frac{\omega_n^2 k}{\omega_n^2 - \omega^2 + i 2\zeta \omega_n \omega}$$

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.6 Cutting Conditions

Cutting Conditions 🔳 - Overview

Milling Mode

The following milling modes and defining parameters are available for the cylindrical endmill type:

- <u>Down-milling</u>
- <u>Up-milling</u>
- <u>Slotting</u>
- Face-milling

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.6.1 Down-milling

CUTPRO

Down-milling

Also known as Climb Milling.

Spindle Direction

Enter the direction of cutter rotation [cw/ccw]:

Clockwise

Counter-clockwise

Feedrate

Enter the feed rate of the cutting operation as [*mm/flute*] or [*in/flute*]. If the feed rate is as [*mm/min*], use the following equation to convert:

Spindle Speed

Enter the spindle speed, in revolutions per minute [*rpm*]. Available only for certain simulation modes.

Axial Depth of Cut

Enter the axial depth of cut from tool tip up to workpiece surface level. Available only for certain simulation modes.

Width of Cut

Enter the width of cut from tool edge towards it's full diameter.

Number of Revolutions

Enter the number of cutter revolutions to be simulated. Available only for certain simulation modes.

Min. surface speed & max. surface speed

Enter the minimum surface speed and maximum surface speed. Available only for certain simulation modes.

*parameters vary dependant on simulation

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.6.2 Up-milling

CUTPRO

Up-milling

Also known as Conventional Milling.

Spindle Direction Enter the direction of cutter rotation [*cw / ccw*]:

Clockwise

Counter-clockwise

Feedrate

Enter the feed rate of the cutting operation as [*mm/flute*] or [in/flute]. If the feed rate is as [*mm/min*], use the following equation to convert:

(feed rate [mm/tooth]) = $\frac{(\text{feed rate[mm/min]})}{(\text{number of flute}) * (\text{spindle speed[rev/min]})}$

Spindle Speed

Enter the spindle speed, in revolutions per minute **[***rpm***]**. Available only for certain simulation modes.

Axial Depth of Cut

Enter the axial depth of cut from tool tip up to workpiece surface level. Available only for certain simulation modes.

Width of Cut

Enter the width of cut from tool edge towards it's full diameter.

Number of Revolutions

Enter the number of cutter revolutions to be simulated. Available only for certain simulation modes.

Min. surface speed & max. surface speed

Enter the minimum surface speed and maximum surface speed. Available only for certain simulation modes.

*parameters vary dependant on simulation

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.6.3 Slotting

Slotting

Uses full width of cut / cutter diameter.

Spindle Direction

Enter the direction of cutter rotation [cw/ccw]:

Clockwise

Counter-clockwise

Feedrate

Enter the feed rate of the cutting operation as [*mm/flute*] or [in/flute]. If the feed rate is as [*mm/min*], use the following equation to convert:

(feed rate [mm/tooth]) = (feed rate [mm/min]) (number of flute) * (spindle speed[rev/min])

Spindle Speed

CUTPRO

Enter the spindle speed, in revolutions per minute **[***rpm***]**. Available only for certain simulation modes.

Axial Depth of Cut

Enter the axial depth of cut from tool tip up to workpiece surface level. Available only for certain simulation modes.

Number of Revolutions

Enter the number of cutter revolutions to be simulated. Available only for certain simulation modes.

Min. surface speed & max. surface speed

Enter the minimum surface speed and maximum surface speed. Available only for certain simulation modes.

*parameters vary dependant on simulation

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.6.4 Face-milling

CUTPRO

Face-milling

Uses the bottom of the tool to machine the surface of the workpiece.

Spindle Direction Enter the direction of cutter rotation [*cw* / *ccw*]:

Clockwise

Counter-clockwise

Feedrate

Enter the feed rate of the cutting operation as [*mm/flute*] or [*in/flute*]. If the feed rate is as [*mm/min*], use the following equation to convert:

Spindle Speed

Enter the spindle speed, in revolutions per minute **[***rpm***]**. Available only for certain simulation modes.

Axial Depth of Cut

Enter the axial depth of cut from tool tip up to workpiece surface level. Available only for certain simulation modes.

Entrance/Exit Angles

Enter the entrance/exit tool angles between 0 and 180 degrees.

Number of Revolutions

Enter the number of cutter revolutions to be simulated. Available only for certain simulation modes.

Min. surface speed & max. surface speed

Enter the minimum surface speed and maximum surface speed. Available only for certain simulation modes.

*parameters vary dependant on simulation

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7 Results

CUTPRO

Results 🔤 - Overview

<u>Using graphs in CutPro</u> (Plot Results buttons)

- Forces
 - o XYZ cutting forces
 - o XY resultant force
 - o Tangential force
 - o Experimental average cutting forces

Chip data

- o Chip thickness
- o About dynamic chip thickness
- Vibrations
 - o Tool vibrations
 - o Workpiece vibrations

• Spindle parameters

- o Spindle power
- o Spindle torque
- o Spindle bending moment

• Surface finishes

- o Up-milling surface finish
- o Down-milling surface finish
- Stability lobes
 - o <u>Analytical</u>
 - o Analytical with variable pitch
 - o <u>Time domain</u>
- Variable pitch
 - o Optimum variable pitch
- Fast Fourier Transform [FFT] o FFT

2.1.7.1 XYZ cutting forces

There are two available buttons which may be used to plot cutting forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot cutting forces. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M **E** Feed Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.2 XY resultant force

XY resultant force

There are two available buttons which may be used to plot xy resultant forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot XY resultant force. The results of this plot will look something like the figure below:

Resultant Force on XY Plane

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.3 Tangential force

Tangential force

There are two available buttons which may be used to plot tangential cutting forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot tangential cutting force. The results of this plot will look something like the figure below:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.4 Experimental average cutting forces

manufacturing automation laboratories	CUTPRO
---	--------

Experimental average cutting forces

There are two available buttons which may be used to plot experimental average cutting forces:

CUTPRO

> Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot experimental average cutting forces. The results of this plot will look something like the figure below:

Exp. Average Cutting Forces

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.5 Chip thickness

Chip thickness

There are two available buttons which may be used to plot chip thickness:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot chip thickness. The results of this plot will look something like the figure below:

2.1.7.6 About dynamic chip thickness

About dynamic chip thickness

CUTPRO

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.7 Tool vibrations

Tool vibrations

There are two available buttons which may be used to plot tool vibration:

- **Plot**: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot tool vibration. The results of this plot will look something like the figure below:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.8 Workpiece vibrations

manufacturing automation laboratories

CUTPRO

Workpiece vibrations

- **Plot**: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot workpiece vibration. The results of this plot will look something like the figure below:

Workpiece Vibration

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.7.9 Spindle power

manufacturing automation laboratories

CUTPRO

Spindle power

There are two available buttons which may be used to plot spindle power:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot spindle power. The results of this plot will look something like the figure below:

2.1.7.10 Spindle torque

CUTPRO

Spindle torque

There are two available buttons which may be used to plot spindle torque:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot spindle torque. The results of this plot will look something like the figure below:

2.1.7.11 Spindle bending moment

manufacturing automation laboratories

CUTPRO

Spindle bending moment

There are two available buttons which may be used to plot spindle bending moment:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot spindle bending moment. The results of this plot will look something like the figure below:

2.1.7.12 Up-milling surface finish

manufacturing automation laboratories

Up-milling surface finish

There are two available buttons which may be used to plot up-milling surface finish:

Plot: Plots single result graph (Located under results in simulation)

Double Right click on Surface Finish Plot: View surface finish plotted on planes

Not all simulations have an option to plot up-milling surface finish. The results of this plot will look something like the figure below: **CUTPRO**

2.1.7.13 Down-milling surface finish

CUTPRO

Down-milling surface finish

There are two available buttons which may be used to plot down-milling surface finish:

- **Plot:** Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Double Right click on Surface Finish Plot: View surface finish plotted on planes

Not all simulations have an option to plot down-milling surface finish. The results of this plot will look something like the figure below:

2.1.7.14 Stability lobes (analytical)

manufacturing automation laboratories

CUTPRO

Stability lobes (analytical)

There are two available buttons which may be used to plot analytical stability lobes:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot analytical stability lobes. The results of this plot will look something like the figure below:

2.1.7.15 Stability lobes (analytical - variable pitch)

Stability lobes (analytical - variable pitch)

There are two available buttons which may be used to plot analytical stability lobes for a variable pitch cutter:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot analytical stability lobes for a variable pitch cutter. The results of this plot will look something like the figure below:

2.1.7.16 Stability lobes (time domain)

manufacturing automation laboratories

CUTPRO

Stability lobes (time domain)

There are two available buttons which may be used to plot analytical stability lobes in time domain:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot analytical stability lobes in time domain. The results of this plot will look something like the figure below:

2.1.7.17 Optimum variable pitches

Optimum variable pitches

There are two available buttons which may be used to plot optimum variable pitch:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot optimum variable pitch. The results of this plot will look something like the figure below:

Optimum Variable Pitch

2.1.7.18 Fast Fourier Transform [FFT]

manufacturing automation laboratories

CUTPRO

Fast Fourier Transform [FFT]

There are two available buttons which may be used to plot an FFT:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot an FFT. The results of this plot will look something like the figure below:

Right-click on the graph and select "FFT"

An FFT of the desired plot will then be plotted, to reverse this step simply right-click on the plot again.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.1.8 Example Files

Milling Simulation - Example Files

CutPro comes with various example files for simulation in MIIling.

To access these files, click on the "Examples" button as shown below:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2 Boring/Turning Simulation

CUTPRO

CutPro: Boring/Turning Simulation - Overview

The "Simulation Workspace Tree" uses a top-to-bottom workflow process, and there are a

few main tabs which require attention in boring/turning (for example):

- Workspace Define the name and unit system
- **Simulation mode** Static analysis, Analytical stability lobes, Cutting coefficient identification, Cutting forces using slipline fields
- Machine & Tool Tooling geometries/orientation and properties
 - Structural Flexibility Flexibility of the tool, holder, etc.
- Workpiece Material properties
 - Structural Flexibility Flexibility of the workpiece, fixture and spindle setup
- III Cutting Conditions Speeds, feeds, and operation parameters
- **<u>Results</u>** Plots of information obtained from the simulation

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.1 Workspaces

CUTPRO

Workspace 🕘 - Overview

In CutPro the user can define what is called a "Workspace". Inside of this workspace file (*.cws) one can perform multiple simulations simultaneously and compare them to one-another.

Creating, opening and saving a workspace

A workspace may be managed under the file tab, here you may also define the unit system of preference:

◎ ■ ► + ■ ₩ =					
Home Tools					
New workspace	Milling Simulations	۲	Metric 🔘 Imperial		
Open Open		monthellelland		$\sim m$	****
Save	pol	- WANNAMAR		$\sim 1 $	* * * *
Save as	Analytical stability lobes	Milling process simulation	Stability lobes in time domain	Optimize variable pitch	Cutting coefficient identification
Recent	Boring/Turning Simulatio	ns			
Workspace folder Examples		- wallwill WWW		Tool	
About	Static analysis	Analytical stability lobes	Cutting coefficient identification	Cutting forces using slipline fields	
Support	Drilling Simulations				
Exit	Static analysis	Analytical stability lobes	Hole share		
	State analysis	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	note shape		

Unit system in CutPro

Both Metric and Imperial unit systems for a workspace can be swapped/converted anytime:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2 Managers

150

Managers - Overview

Accessed under the "Tools", the Manager section is mainly used for managing workpiece material definitions and cutting tool files in your tool library

The <u>Workpiece material manager</u> is the central location in CutPro for defining materials and their properties.

Using this function the user can simply load a pre-existing material inside a project rather than creating it on-the-fly.

The <u>Tool Editor</u> is used to define and save tool geometry / tools, or perform receptance coupling.

Using this function the user can simply load a pre-existing tool inside a project rather than creating it on-the-fly.

The <u>Check for Updates</u> will do just that, it will notify the user if there is a new CutPro Version and Installation available. CutPro does this automatically, however if you select "Remind me later", you will

have to manually update CutPro using this button.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1 Workpiece Material Manager

CUTPRO

Workpiece Material Manager 🔊 - Overview

The Workpiece Material Manager contains two general category of workpiece definitions:

- Standardized workpiece materials (Pre-existing, with CutPro installation) Ex. Aluminum 7050-T6 (AISI Standard Material)
- User-defined workpiece materials (New: Defined by the Customer or by MAL through <u>material</u> <u>characterization services</u>)
 Ex. Secret in-house material

Regardless of which category of material you are using, the following information and data is present.

(4)	Workpiece Material Manager		
Material properties ⁽¹⁾	Standard AISI Metric		
	Categories	Material Properties	۲
Coefficient parameters ⁽²⁾⁽³⁾	▷ Aluminum	Material Name	Aluminum 7075-T6
<u>ocomoiont parametoro</u>	Description of the second s	Category	MAL Materials
	Description Copper [High-Alloy]	Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, 1
imits ⁽⁴⁾	Heat Resistant	Hardness	150.000 HB
<u> </u>	Iron [Chilled Cast]	Density	2.810 g/cm ³
	Iron [Compacted Graphite]	Thermal Conductivity	130.000 W/mK
laterial Standards	Iron [Grey Cast]	Specific Heat Capacity	960.000 J/kgK
	Iron [Malleable Cast]	Youngs Modulus	7.20e+010 N/m ²
	▷ Iron [Nodular Cast]	Impact Strength	0.000 N/m ²
	▷ Iron [Nodular SG]	Elongation	0.110 %
	MAL Materials	Reduction in Area	0.000 %
	Aluminum 7075-T6 [150]	Electrical Conductivity	1.94e+007 S/m
	Aluminum 356.0-T6 [73]	Condition	
	AISI P20 Mold Steel [300]	Tensile Strength	5.72e+008 N/m ²
	Aluminum 6061-T6 [95]	Yield Strength	5.03e+008 N/m ²
	Aluminium 7050-T74 [147]	Shear Strength	3.31e+008 N/m ²
	AISI 4340 Steel [217]	Heat Treatment	
	Aluminum 7050-T7451 Low Speed V<200 m/min [140]	Melting Point (Low)	477.000 °C
	Aluminum 7050-T7451 [140]	Melting Point (High)	635.000 °C
	Titanium Alloy Ti6Al4V [340]	Coefficient of Thermal Expansion	25.200 um/m=°C
	NRC - MDF		Lore of privile of
	CAST Iron C450	(
	Gray Cast iron [75]	Limits	(4
	Titanium Alloy Ti6Al4V [340]	Chip Thickness (min)	0.000 mm
	Inconel 718 [245]	Chip Thickness (max)	0.000 mm
	Inconel 625 [190]	Cutting Speed (min)	0.000 m/min
	Niobium [80]	Cutting Speed (max)	0.000 m/min
	Thermo-Span Superalloy [340]	Rake Angle (min)	0 *
	Waspaloy [351]	Rake Angle (max)	0 *
	AISI 630 Steel [352]		
	4 ()	Material Standards	G
		matchai Standards	(-

- (1) Material properties are only used for reference, these properties are not meaningful for machining simulation
- (2) Coefficient parameters are only shown for user-defined workpiece materials
- (3) **Coefficient parameters** are <u>the only numbers entered into the Material Manager which change simulation results--they</u> <u>are essential for accurate simulations</u>

(4) Limits affect the range in which the force model was created, however <u>these entries are not used within CutPro</u> <u>calculations</u>.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.2.2.1.1 Material properties

CUTPRO

Material properties

The *"Material Properties"* tab displays the specifications of the material given in either unit system:

- Material Properties [Metric units]
- Material Properties [Imperial units]

*Units may be toggled at any time in the Workpiece Material Manager

Naterial Properties	
Material Name	
Category	MAL Materials
Composition	
Hardness	0.000 HB
Density	0.000 g/cm ³
Thermal Conductivity	0.000 W/mK
Specific Heat Capacity	0.000 J/kgK
Youngs Modulus	0.000 N/m ²
Impact Strength	0.000 N/m ²
Elongation	0.000 %
Reduction in Area	0.000 %
Electrical Conductivity	0.000 S/m
Condition	
Tensile Strength	0.000 N/m ²
Yield Strength	0.000 N/m ²
Shear Strength	0.000 N/m ²
Heat Treatment	
Melting Point (Low)	0.000 °C
Melting Point (High)	0.000 °C
Coefficient of Thermal Expansion	0.000 µm/m-°C

Purpose

The "Material Properties" section is primarily used for reference in order to better understand how the material behaves. These properties are not used in CutPro's engine, this is due to the fact that many tests used to identify these properties are far different than machining. For example, the strain rates of the material under machining are extremely high in comparison to that of a tensile test.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.1.1 Metric units

CUTPRO

Material properties - METRIC units

Material name

Category

Composition

Hardness	lardness [HB]		Material Properties	e
	• •		Material Name	Aluminum 7075-T6
Density	[g/cm³]	Category	MAL Materials	
Density			Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, 1
			Hardness	150.000 HB
Inermai	[W/mK]		Density	2.810 g/cm ³
Conductivity			Thermal Conductivity	25.200 W/mK
,			Specific Heat Capacity	960.000 J/kgK
Spacific Heat	[J/kgK]		Youngs Modulus	7.20e+010 N/m ²
Specific Heat			Impact Strength	0.000 N/m ²
Capacity			Elongation	0.110
			Reduction in Area [%]	0.000
Youngs Modulus [N/m²] Impact Strength [N/m²]			Electrical Conductivity	1.94e+007 S/m
			Condition	
			Tensile Strength	5.72e+008 N/m ²
			Yield Strength	5.03e+008 N/m ²
			Shear Strength	3.31e+008 N/m ²
			Heat Treatment	
Liongation			Melting Point (Low)	477.000 °C
			Melting Point (High)	635.000 °C
Reduction in	[%]		Coefficient of Thermal Expansion	0.000 µm/m-°C
Area	r, .1			

Material Dremention

Electrical [S/m] Conductivity

Condition

Tensile Strength [N/m²]

Yield Strength [N/m²]

Shear Strength [N/m²]

Heat Treatment

Melting Point [°C] (Low)

Melting Point [°C] (High)

Coefficient of [µm/m-°C] Thermal Expansion

Material Name	Aluminum 7075-T6
Category	MAL Materials
Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr,
Hardness	150.000 HB
Density	2.810 g/cm³
Thermal Conductivity	25.200 W/mK
Specific Heat Capacity	960.000 J/kgK
Youngs Modulus	7.20e+010 N/m ²
Impact Strength	0.000 N/m ²
Elongation	0.110
Reduction in Area [%]	0.000
Electrical Conductivity	1.94e+007 S/m
Condition	
Tensile Strength	5.72e+008 N/m ²
Yield Strength	5.03e+008 N/m ²
Shear Strength	3.31e+008 N/m ²
Heat Treatment	
Melting Point (Low)	477.000 °C
Melting Point (High)	635.000 °C
C (C) (T) (T) (T) (T)	0.000 / 0.0

0

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.1.2 Imperial units

Material properties - IMPERIAL units

Material name

Category

Composition

Density [lb/in³]

Thermal [BTu/hr-ft°F]

Specific Heat Capacity [BTu/lb°F]

Youngs Modulus [lbf/ft²]

Impact Strength [Ibf/ft²]

Elongation

Reduction in Area [%]

Electrical Conductivity [S/ft]

Condition

Tensile Strength [lbf/ft²]

Yield Strength [lbf/ft²]

Shear Strength [lbf/ft²]

Heat Treatment

Melting Point [°F]

Melting Point [°F]

Coefficient of [in/ft°F]

Material Name	Aluminum 7075-T6
Category	MAL Materials
Composition	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, I
Hardness	150.000 HB
Density	0.102 lb/in ³
Thermal Conductivity	14.560 BTu/hr-ft°F
Specific Heat Capacity	0.229 BTu/lb°F
Youngs Modulus	1.04e+007 lbf/ft ²
Impact Strength	0.000 lbf/ft ²
Elongation	0.110
Reduction in Area [%]	0.000
Electrical Conductivity	5918446.599 S/ft
Condition	
Tensile Strength	82961.570 lbf/ft ²
Yield Strength	72953.968 lbf/ft ²
Shear Strength	48007.482 lbf/ft ²
Heat Treatment	
Melting Point (Low)	858.600 °F
Melting Point (High)	1143.000 °F
Coefficient of Thermal Expansion	0.000 in/ft°F

Material Properties

Thermal Expansion

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.2 Coefficient parameters

CUTPRO

Coefficient parameters

The *"Coefficient parameters"* tab offers 9 different force models which may be used to characterize user-defined materials.

METRIC Units

- Average cutting coefficient model
- Orthogonal to oblique model
- Exponential chip thickness model
- Semi-mechanistic model
- Sandvik model
- Kienzle model
- Rake face model

*Imperial Units are not supported for Force Models

Coefficient Para	meters	۲
Force Model		Rake Face Model
Kte (N/mm)	0	24.76
Kre (N/mm)	0	27.36
Kae (N/mm)	0	0
Ku (N/mm²)	0	1000.78
Kv (N/mm²)	0	1526.5514

Purpose

The "Coefficient parameters" section is used for defining a force model for a user material⁽¹⁾. The force model consists of constants or equations that are used in CutPro's engine. Using dynamometers and experiments, the material is machined and force data is collected. This data i used in constructing a force model which characterizes how the material behaves under various machining conditions. The model is then used to calculate cutting forces, torque, power and so on. If there are any inaccuracies with this model (material characterization), the simulations in CutPro will be completely wrong. If you are working with your own custom material and are not familiar with the science behind this, we encourage customers to contact MAL Inc for assistance.

(1) Coefficient parameters are only shown for user-defined workpiece materials

CUTPRO

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.2.1 Average cutting coefficient model [Metric]

Average cutting coefficient model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$

$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$

$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

Parameters:	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	K_{rc} : radial shearing coefficient [N/mm ²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.2.2 Orthogonal to oblique model [Metric]

manufacturing automation laboratories

CUTPRO

Orthogonal to oblique model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{tc} = \frac{\tau}{\sin \varphi_n} \frac{\cos(\beta_n - \alpha_n) + \tan \eta_c \sin \beta_n \tan i}{c}$$
$$K_{rc} = \frac{\tau}{\sin \varphi_n \cos i} \frac{\sin(\beta_n - \alpha_n)}{c}$$
$$K_{ac} = \frac{\tau}{\sin \varphi_n} \frac{\cos(\beta_n - \alpha_n) \tan i - \tan \eta_c \sin \beta_n}{c}$$
$$c = \sqrt{\cos^2(\varphi_n + \beta_n - \alpha_n) + \tan^2 \eta_c \sin^2 \beta_n}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

$^{ au}$ ("t"): shear stress [N/mm²]	ϕ_n ("f"): shear angle [°]
β_n ("b"): friction angle [°]	α _n : rake angle [°]
^η : chip flow angle [°]	<i>i</i> : helix angle [°]

2.2.2.1.2.3 Exponential chip thickness [Metric]

manufacturing automation laboratories

CUTPRO

Exponential chip thickness

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$
$$K_{tc} = KT \cdot h^{-p}$$
$$K_{rc} = KR \cdot KT \cdot h^{-q}$$
$$K_{ac} = KA \cdot KT \cdot h^{-r}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]

<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]
<i>KT</i> : tangential shearing coef. parameter	<i>p :</i> tangential chip thickness order
<i>KR</i> : radial shearing coef. parameter	<i>q :</i> radial chip thickness order
KA : axial shearing coef. parameter	<i>r :</i> axial chip thickness order

2.2.2.1.2.4 Semi-mechanistic model [Metric]

CUTPRO

Semi-mechanistic model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$

$$K_{tc} = k_n \Big[\cos \alpha_n + k_f \cos \eta \sin \alpha_n + k_f \tan i \sin \eta \Big]$$

$$K_{rc} = k_n \Big[-\frac{\sin \alpha_n}{\cos i} + k_f \cos \alpha_n \frac{\cos \eta}{\cos i} \Big]$$

$$K_{ac} = k_n \Big[\tan i \cos \alpha_n - k_f \sin \eta + k_f \tan i \cos \eta \sin \alpha_n \Big]$$

Parameters:	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]
α_n : rake angle [°]	<i>k_n</i> : cutting pressure on rake face

CUTPRO

<i>i</i> : helix angle [°]	k_{f} : cutting pressure rate on flank face
^η : chip flow angle [°]	

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.2.5 Sandvik model [Metric]

manufacturing automation laboratories

Sandvik force model

Equations:

$$\begin{split} dF_t &= K_{tc} * h * dz \\ dF_r &= K_{rc} * h * dz \\ dF_a &= K_{ac} * h * dz \\ K_{tc} &= K_t * h^{-p} \\ K_{rc} &= K_c * h^{-q} \\ K_{ac} &= K_r * h^{-r} \end{split}$$

Parameters:

dF_t : differential tangential force [N]	
<i>dF_r</i> : differential radial force [N]	
<i>dF_a</i> : differential axial force [N]	
	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	K_{rc} : radial shearing coefficient [N/mm ²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

CUTPRO

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.2.6 Kienzle model [Metric]

manufacturing automation laboratories

Kienzle force model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$

$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$

$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$

$$K_{tc} = K_{u}(\sin \eta \sin i + \cos \eta \cos i \sin \alpha_{n}) + K_{v}(\cos \alpha_{n} \cos i)$$

$$K_{rc} = K_{u}(\cos \alpha_{n} \cos \eta) - K_{v} \sin \alpha_{n}$$

$$K_{ac} = K_{u}(-\sin \eta \cos i + \cos \eta \sin i \sin \alpha_{n}) + K_{v}(\cos \alpha_{n} \sin i)$$

$$K_{u} = K_{u_{1,1}}h^{(-u)}$$

$$K_{v} = K_{v_{1,1}}h^{(-v)}$$

Parameters:	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]

<i>dZ</i> : differential axial depth of cut [mm]	K_{rc} : radial shearing coefficient [N/mm ²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]
α _n : rake angle [°]	K_u : cutting pressure parallel to rake face
<i>i</i> : helix angle [°]	K_V : cutting pressure normal to rake face
$^{m \eta}$: chip flow angle [°]	$K_{u1.1}$: Coefficient parallel to rake face
<i>u:</i> parallel to rake face chip thickness order	$K_{v1.1}$: Coefficient normal to rake face

2.2.2.1.2.7 Rake face model [Metric]

order

manufacturing automation laboratories

Rake face force model

Equations:

$$dF_u = K_u h \, dz$$

$$dF_{v} = K_{v}h \, dz$$

$$\begin{bmatrix} dF_r \\ dF_t \\ dF_a \end{bmatrix} = [A] \begin{bmatrix} dF_u \\ dF_v \end{bmatrix} + dS \begin{bmatrix} K_{re} \\ K_{te} \\ K_{ae} \end{bmatrix}$$

v: normal to rake face chip thickness

Parameters:

CUTPRO

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dF_u</i> : differential friction force [N]	K_u : Friction coefficient on the rake face [N/mm ²]
<i>dF_V</i> : differential normal force [N]	<i>K_V</i> : Normal coefficient on the rake face [N/mm²]
<i>dz</i> : differential axial depth of cut [mm]	<i>h</i> : chip thickness [mm]
<i>dS</i> : differential cutting edge length [mm]	A : Transformation matrix between the rake face CS and RTA CS

2.2.2.1.3 Limits

CUTPRO

Limits

The "Limits" tab displays the limits of the material characterization given in either unit system:

imits	(
Chip Thickness (min)	0.050 mm
Chip Thickness (max)	0.300 mm
Cutting Speed (min)	500.000 m/min
Cutting Speed (max)	3000.000 m/min
Rake Angle (min)	0 °
Rake Angle (max)	16 °
imits	(
Chin Thickness (min)	0.000 :
Chip Thickness (max)	0.000 in
Cutting Speed (min)	9.843 ft/min
Cutting Speed (max)	154.199 ft/min
Rake Angle (min)	2 °

	Metric	Imperial
Chip	mm	in
Thickness		
Cutting Speed	m/min	ft/min
Rake Angle	0	0

*Units may be toggled at any time in the Workpiece Material Manager

Purpose

The "Limits" section is used for defining the limits of user-defined material characterization models, or for viewing the limits of provided material characterization models. These values determine the conditions in which the material was characterized. For example, in the above test, perhaps the following was done:

Chip Thickness: 0.050 mm, 0.100 mm, 0.150 mm, 0.200 mm, 0.250 mm, 0.300 mm. Rake Angles: 0°, 4°, 8°, 12°, 16°. Cutting Speeds: 500 m/min, 1000 m/min, 1500 m/min, 2000 m/min, 2500 m/min, 3000 m/min

This allows the material to be defined for various feeds, rake angles and speeds. As a result, you can expect fully accurate simulations within these min and max ranges. If your simulation is out of range, for example rake 18, you can still expect to see a good accuracy. It is up to the user to decide how suitable the material limits are based on the application. If you require assistance on this topic, you can contact <u>MAL's support</u> team within CutPro.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.1.4 Material standards

manufacturing automation laboratories

CUTPRO

Material standards

The *"Material standards"* tab displays the material standards which the selected material belongs in, and changes the name of the material based on the selected standard. The following standards are available:

Mate	rial Stand	dards					
1	DIN-nr SS	₩nr. ₩ AFNOR	I BS I UNI	EN VIS	🗹 SAE 🗹 UNF	AISI	
DIN-nr : German Institute for Standardization # (Deutsches Institut für Normung e.V.) Wnr. : German material number (Werkstoffnummer) BS: British Standards							
EN: European Committee for Standardization SAE: Society of Automotive Engineers							
AISI: SS:	AISI: American Iron and Steel Institute SS: Swedish Standards Institute (Svensk Standard Standardisering)						

AFNOR: French national organization for standardization (Association Française de Normalisation)

- UNI: Italian National Standards Institute (Ente Nazionale Italiano di Unificazione)
- JIS: Japanese Industrial Standards (日本工業規格)
- UNE: Spanish Material Standards (Una Norma Española)
- CMC: Coromant Material Classification (Sandvik)

Purpose

The "Material standards" section is simply used to filter materials by standards. Not every material is available in all standards, for example:

DIN X5CrNiCuNb16-4 [352]	Material Standards	۵
CMC 05.12/15.12 [352]		
DIN C53G [241]	🗹 DIN-nr 🗹 Wnr. 📝 BS 📝 EN 📝 SAE	AISI
DIN AlSi5Cu3Mn [175]	SS 📝 AFNOR 🟹 UNI 🟹 JIS 🟹 UNF	CMC
Alumec 89 [175]		

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.2.2 Check for Updates

Check for updates S - Overview

Home Tools
 Home Tools
 ToolEditor Check for updates
 Manager Settings

Click on the 'Check for updates' button to see if a new CutPro version has been released:

1) If a new version isn't available

CutPro will tell you your current version and tell you that it's up-to-date.

2) If a new version is available

CutPro will show an update prompt along with the update contents.

3) If you cannot update at all

Please <u>contact us</u> if the update button is not visible in CutPro although you have an older version. This likely means that your Updates have expired.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.2.3 Simulation Modes

CUTPRO

Simulation Modes 🔩 - Overview

Inside of the active Workspace, the user can define many simulations, and also various simulation modes may be selected:

- Static Analysis
- Analytical stability lobes
- Cutting coefficient identification

Useful Functions for Simulation

+ Add: Add a new simulation in the active workspace

Remove: Removes selected simulation in the active workspace

Duplicate: Duplicates selected simulation in the active workspace

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.3.1 Static analysis

CUTPRO

Static analysis

Workspace Tree		
Metric Boring/Turning Workspace (1 item)		
Static analysis: Cutpe	ro 🔻	
Properties		
Simulation <mode></mode>		
 General 		
Name	Cutpro	
Mode	Static analysis	
	Static analysis	
	Analytical stability lobes	
	Cutting coefficient identification	
	Cutting forces using slipline fields	
Mode		
Simulation mode		
Static analysis		
Simulates static cutting force power and torque in time do	es, static deflections of the tool, spindle omain	

What is this?

A static (no vibration / rigid) process simulation which provides the user the following results:

A 🛃 Results	>>
Cutting Forces	>
Feed/Tangential/Radial Forces	>
Spindle Power	>
Spindle Torque	>
Workpiece Deflection	>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

CUTPRO

Analytical stability lobes

Workspace Tree				
Metric Boring/Turning Workspace (1 item) A Analytical stability lobes: Cutpro				
Properties				
Simulation <mode></mode>				
▲ General				
Name	Cutpro			
Mode	Analytical stability lobes			
Process damping	Static analysis			
Enabled	Analytical stability lobes			
	Cutting coefficient identification			
	Cutting forces using slipline fields			
Mode Simulation mode Analytical stability lobes Calculates the stability lobes within	a spindle speed range			

What is this?

Analytical stability lobes provide the user with what is called a "Stability Pocket", which denotes a productive location for chatter-free cutting:

This is a fast analytical stability lobe prediction solved in a frequency domain. It generates the stability lobes by indicating the axial/radial depth of cut and spindle speeds for a fixed width of cut.

Additional Features:

Process damping (Available for certain materials only)

Heat resistant materials such as titanium and steel alloys that are frequently used in thin walled components can only be cut at low cutting speeds.

When machining these materials at low speeds, it is known that the chatter stability limit increases due to additional damping caused by the process.

This phenomenon is called process damping. Due to the sharpness of the cutting edge, part of the chip is forced to go under the tool and causes interference on the tool clearance flank.

Simulation	<enabled></enabled>			
General				
Name		millingsim		
Mode		Analytical stability lobes	•	
Process data	amping			
Enabled		\checkmark		
Enabled Enable/disabl	e process damping fo	r stability lobe calculations		
Warning				×

2.2.3.3 Cutting coefficient identification

Cutting coefficient identification

What is this?

Cutting coefficient identification provides the user with expected cutting forces for a material:

Note that CutPro has a material database which may already contain the material of interest.

If one does not know the cutting constants of a material-cutter combination, milling experiments are conducted. The cutting forces in x,y and z are then measured, and provided to this simulation. Finally, the cutting coefficients are identified for the material.

2.2.3.4 Cutting forces using slipline fields

CUTPRO

Cutting forces using slipline fields

What is this?

The cutting forces are determined using slip line field theory, which analyzes the stresses while material is being deformed over the rake face of the tool.

The following values are determined from values such as temperate, tool geometry, workpiece properties, and Johnson Cook parameters

Johnson–Cook flow stress model

The Johnson–Cook (JC) model is purely empirical and gives the following relation for the flow stress (σ_y)

(1) $\sigma_y(\varepsilon_{\rm p}, \dot{\varepsilon_{\rm p}}, T) = [A + B(\varepsilon_{\rm p})^n] [1 + C \ln(\dot{\varepsilon_{\rm p}}^*)] [1 - (T^*)^m]$ Where $\varepsilon_{\rm Pis}$ the equivalent plastic strain, $\dot{\varepsilon_{\rm P}}$ is the plastic strain-rate, and $A, B, C, n, m_{\rm are}$

Where ${}^{\circ}$ Pis the equivalent plastic strain, ${}^{\circ}$ Pis the plastic strain-rate, and A , D , O , n , m are material constants.

The normalized strain-rate and temperature in equation (1) are defined as

 $\dot{\varepsilon_{\mathbf{p}}}^* := \frac{\dot{\varepsilon_{\mathbf{p}}}}{\dot{\varepsilon_{\mathbf{p}0}}} \quad \text{and} \quad T^* := \frac{(T-T_0)}{(T_m - T_0)}$

where ${}^{\mathbb{Z}}\mathbf{p0}$ is the effective plastic strain-rate of the quasi-static test used to determine the yield and hardening parameters A,B and n.

This is not as it is often thought just a parameter to make $\dot{e_p}^*$ nondimensional. T_0 is a reference temperature, and T_m is a reference melt temperature.

For conditions where $T^* < 0$, we assume that m = 1.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4 Machine & Tool

Machine & Tool 🥕 - Overview

Here the user may select/edit properties related to the machine & tool, such as:

.

<u>Cutter geometry</u>
 <u>Structural flexibility</u>

 Workspace Tree
 A P Machine and Tool

	Machine and Tool		0
	📦 Structural Flexibility		
Pr	operties		
C	Cutter Properties		
4	General		
	Cutter Type	Single insert boring	
4	Tool holder		
	Diameter	32.000 mm	
	Length	140.000 mm	
4	Pitch angle		
	Angle	0.000 °	

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4.1 Cutter geometry

CUTPRO

Machine & Tool 🥒 - Cutter type 🛛

In CUTPRO boring/turning there are four types of cutters which can be simulated:

- Axial turning
- Radial turning
- Single insert boring
- <u>Multi insert boring</u>

Inserts may be selected as follows:

Boring/Turning Cutter				
	Insert Shane		Insert Orientation And	les
1	moreonope		Insert orientation Ang	105
85.0°	Type A - Paralle	logram 85° 🔽	Axial rake (yp)	12.000 °
	Length (I)	12.000 mm	Radial rake (yf)	8.000 °
	Width (W)	6.800 mm	Cutting edge (kr)	90.000 °
/ 0 /	Clearance angle	0.000 °	Axial runout	0.000 mm
/ / ^L	Nose angle (E)	85.000 *	Radial runout	0.000 mm
R	Corner radius (R)	0.800 mm		
Tool Axis				01
Feed				UL
	Copy to all Current Flute	1		
Apply Cancel				
A - Parallelogram B ⁵ B - Parallelogram B ² Diamond C - Diamond 80° D - Diamond 55°	K - Parallelogram 55° L - Rectangular 90° E - Diamond 75° F - Diamond 50°			
M - Diamond 86° V - Diamond 35°	S - Square 90*			
Miscellaneous				
H - Hexagonal 120* 0 - Octagonal 135*	P - Pentagonal 108* R - Round			
T - Triangle 60° W - Trigon 80°				

2.2.4.1.1 Axial turning

Cutter type 🔹 - Axial turning

Pr	operties		
C	utter Properties		
4	General		
	Cutter Type	Axial turning	
4	Tool holder		
	Diameter	32.000 mm	
	Length	140.000 mm	

Click on the 🔤 button to access the cutter designer:

	Insert Shape		Insert Orientation Ang	les	-
*	Type E - Diamo	ond 75° 🔽	Axial rake (yp)	12.000 °	
	Length (L)	12.000 mm	Radial rake (y)	8.000 °	$\gamma_{\rm f}$
15.0	Width (W)		Cutting edge (kr)	90.000 °	
	Clearance angle	0.000 °	Axial runout	0.000 mm	Bottom
R	Nose angle (E)	75.000 *	Radial runout	0.000 mm	
	Corner radius (R)	0.800 mm			
Tool Axis Feed				01	
G	opy to all Current Flute	1			Kr O

Run-out

Run-outs are defined as deviations from the ideal/design coordinates of the cutter.

2.2.4.1.2 Radial turning

Cutter type 🛛 - Radial turning

Demonstration					
Radial turning					
Descrition					
Properties					
Cutter Properties					
 General 					
Cutter Type	Radial turning 🛛 🔽 🔤				
Tool holder					
Diameter	32.000 mm				
Length	140.000 mm				

Click on the 🔤 button to access the cutter designer:

	Insert Shape		Insert Orientation Ang	les	
. . .	Type E - Diamo	ond 75° 🔽	Axial rake (yp)	12.000 °	
L	Length (L)	12.000 mm	Radial rake (y)	8.000 °	
15.0	Width (W)		Cutting edge (kr)	90.000 °	
O/	Clearance angle	0.000 °	Axial runout	0.000 mm	B
R	Nose angle (E)	75.000 °	Radial runout	0.000 mm	
\checkmark	Corner radius (R)	0.800 mm			
				01	

Run-out

Run-outs are defined as deviations from the ideal/design coordinates of the cutter.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4.1.3 Single insert boring

Cutter type 🔹 - Single insert boring

CutPro Modules

Pr	operties		
C	utter Properties		
4	General		
	Cutter Type	Single insert boring	
4	Tool holder		
	Diameter	32.000 mm	
	Length	140.000 mm	
4	Pitch angle		
	Angle	0.000 °	

Click on the 🔤 button to access the cutter designer:

Boring/Turning Cutter						×
Boring/Turning Cutter	Insert Shape Type R - Roy Length (L) Width (W) Clearance angle Nose angle (E)	und 12.000 mm 0.000 °	Insert Orientation Angl Axial rake (yp) Radial rake (yf) Cutting edge (kr) Axial runout Radial runout	les 12.000 ° 8.000 ° 90.000 ° 0.000 mm 0.000 mm	×	
Toold Axis Feed Apply Cancel	Corner radius (2)	1		01		× ×

Run-out

Run-outs are defined as deviations from the ideal/design coordinates of the cutter.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4.1.4 Multi insert boring

Cutter type 🔹 - Multi insert boring
CutPro Modules

Pro	Properties					
Cutter Properties						
4	General					
	Cutter Type	Multi insert boring 🛛 🔽 🚥				
	Number of Flutes	2				
4	Tool holder					
	Diameter	32.000 mm				
	Length	140.000 mm				
 Pitch angle 						
	Uniform	\checkmark				
	Angle	180.000 °				

Click on the button to access the cutter designer:

Run-out

Run-outs are defined as deviations from the ideal/design coordinates of the cutter.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4.2 Structural flexibility

MAL	manufacturing automation laboratories	CUTPRO

Machine & Tool 🥟 - Structural flexibility 💚

Machine & Tool simulation models available:

- <u>Rigid model</u>
- <u>Structural vibrations model</u>

Workspace Tree						
🔺 🔑 Machine and Tool 📃						
🕥 Structural Flexibility						
Properties						
Structural Flexibility < Dynami	ics data>					
4 General						
Model	Structural Vibrations					
Dynamics data	Measured FRF file 🛛 🔽 🚥					
	Measured FRF file					
	Modal/Residue data files					
Vibration Parameters						

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4.2.1 Rigid model

CUTPRO

Structural flexibility • - Rigid machine & tool model

- Effects of machine & tool vibrations are <u>not</u> included in the simulation
- Machine/cutter is assumed rigid
- Simulation will be under static conditions.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.4.2.2 Structural vibrations model

CUTPRO

Structural flexibility Structural vibrations machine & tool

Machine & tool has structural flexibility

Dynamics data

• Measured FRF (for analytical stability lobes & variable pitch simulation only)

ransfe	r Funct	tion M	latrix			Direction	Filename (FRF)	FRF Type	Gain	Rigi
					•	XX	C:\ProgramData\MAL\CutPro\Resource\Gxx.frf [101:1000:1 Hz]	Displacement	1.000	
	x	Y	Z	Θ		XY	C:\ProgramData\MAL\CutPro\Resource\Gxy.frf [101:1000:1 Hz]	Displacement	1.000	
	100	201	107			XZ	C:\ProgramData\MAL\CutPro\Resource\Gxz.frf [101:1000:1 Hz]	Displacement	1.000	
×	**	XY	X2			YX	C:\ProgramData\MAL\CutPro\Resource\Gyx.frf [101:1000:1 Hz]	Displacement	1.000	
Y	YX	YY	YZ			YY	C:\ProgramData\MAL\CutPro\Resource\Gyy.frf [101:1000:1 Hz]	Displacement	1.000	
z	ZX	ZY	ZZ	ZO		YZ	C:\ProgramData\MAL\CutPro\Resource\Gyz.frf [101:1000:1 Hz]	Displacement	1.000	
Θ			ΘZ	00		ZX	C:\ProgramData\MAL\CutPro\Resource\Gzx.frf [101:1000:1 Hz]	Displacement	1.000	
- 5	mmet	rical	_			ZY	C:\ProgramData\MAL\CutPro\Resource\Gzy.frf [101:1000:1 Hz]	Displacement	1,000	
)	ymmeu	rical	_			ZZ	C:\ProgramData\MAL\CutPro\Resource\Gzz.frf [101:1000:1 Hz]	Displacement	1.000	
X		1		1		ZΘ	Rigid	Displacement	1.000	V
0		1		1		ΘZ	Rigid	Displacement	1,000	V
X	+2			-		00	Rigid	Displacement	1.000	V
	Coordi	inate !	Syste	m			Frequency Range 100.000 Hz to 2000.000	Hz		

• Modal/residue data files

X modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.
Y modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.

• Vibration parameters

This uses the following dynamic parameters. It only allows for a single dominant mode in each of the X- and Y-directions.

Natural frequency	Natural frequency of the system in [Hz]
Damping ratio	Damping ratio for that mode
Stiffness	Stiffness of the system [N/m]

Transfer function values are calculated using following equation in frequency domain:

$$\Phi = \frac{\omega_n^2 k}{\omega_n^2 - \omega^2 + i 2\zeta \omega_n \omega}$$

2.2.5 Workpiece

CUTPRO

Workpiece 🧼 - Overview

Under the workpiece category of simulation, the user is to select a workpiece material:

Workspace Tree		
🔺 🧼 Workpiece		-
•		•
Properties		
Workpiece Material < Material>		
 General 		
Material	Aluminum 7075-T6[150]	

Once the material has been selected, parameters involving <u>structural flexibility</u> may be defined.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.5.1 Structural Flexibility

Workpiece 🧼 - Structural flexibility 单

Workpiece simulation models available:

- <u>Rigid model</u>
- <u>Structural vibrations model</u>

Workspace Tree						
🔺 🥥 Workpiece 🔺						
📦 Structural Flexibility	▼.					
Properties						
Structural Flexibility <model></model>						
 General 						
Model	Rigid 💌					
	Rigid					
	Structural Vibrations					

2.2.5.1.1 Rigid model

Structural flexibility • Rigid workpiece model

- Effects of workpiece vibrations are not included in the simulation
- Workpiece is assumed rigid
- Simulation will be under static conditions.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.5.1.2 Structural vibrations model

manufacturing automation laboratories CUTPRO

Structural flexibility • - Structural vibrations machine & tool model

Workpiece has structural flexibility

Dynamics data

• Measured FRF (for analytical stability lobes & variable pitch simulation only)

ransfer Function Matrix		Direction	Filename (FRF)		FRF Type	Gain	Rigi
	•	XX	C:\ProgramData\MAL\CutPro\Resource\Gxx.frf [101:1000:1 Hz]		Displacement	1.000	
X Y Z O		XY	C:\ProgramData\MAL\CutPro\Resource\Gxy.frf [101:1000:1 Hz]		Displacement	1.000	
V VV VV V7		XZ	C:\ProgramData\MAL\CutPro\Resource\Gxz.frf [101:1000:1 Hz]	••••	Displacement	1.000	
X XX XY XZ		YX	C:\ProgramData\MAL\CutPro\Resource\Gyx.frf [101:1000:1 Hz]	****	Displacement	1.000	
Y YX YY YZ		YY	C:\ProgramData\MAL\CutPro\Resource\Gyy.frf [101:1000:1 Hz]	****	Displacement	1.000	(
Z ZX ZY ZZ ZO		YZ	C:\ProgramData\MAL\CutPro\Resource\Gyz.frf [101:1000:1 Hz]		Displacement	1.000	
O OZ OO		ZX	C:\ProgramData\MAL\CutPro\Resource\Gzx.frf [101:1000:1 Hz]	****	Displacement	1.000	
Summetrical		ZY	C:\ProgramData\MAL\CutPro\Resource\Gzy.frf [101:1000:1 Hz]	****	Displacement	1.000	
Symmetrical		ZZ	C:\ProgramData\MAL\CutPro\Resource\Gzz.frf [101:1000:1 Hz]	****	Displacement	1.000	
X		ZΘ	Rigid	1117	Displacement	1.000	V
0		ΘZ	Rigid	111	Displacement	1.000	V
		00	Rigid	1111	Displacement	1.000	V

• Modal/residue data files

X modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.
Y modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.

• Vibration parameters

This uses the following dynamic parameters. It only allows for a single dominant mode in each of the X- and Y-directions.

Natural frequency	Natural frequency of the system in [Hz]
Damping ratio	Damping ratio for that mode
Stiffness	Stiffness of the system [N/m]

Transfer function values are calculated using following equation in frequency domain:

$$\Phi = \frac{\omega_n^2 k}{\omega_n^2 - \omega^2 + i \, 2\zeta \omega_n \omega}$$

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.6 Cutting Conditions

manufacturing automation laboratories

CUTPRO

Cutting Condition III - Overview

Turning Mode

The following cutter types must first be selected from "Machine & Tool":

• Axial turning

- Radial turning
- <u>Single insert boring</u>
- <u>Multi insert boring</u>

Cutting conditions may then be set like so:

Pro	Properties		
С	Cutting conditions		
4	General		
	Feedrate	0.100 mm/flute	
	Spindle speed	2500.000 RPM	
	Axial depth of cut (a)	3.000 mm	
	Number of revolutions	20	

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.7 Results

Results 🐸 - Overview

Using graphs in CutPro (Plot Results buttons)

Forces

- o XYZ cutting forces
- o Feed/Tangential/Radial forces
- o Average cutting forces
- Spindle parameters
 - o Spindle power
 - Spindle torque
- Workpiece
 - Workpiece deflection
- Stability lobes
 - o Analytical

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.7.1 XYZ cutting forces

CUTPRO

CUTPRO

X, Y and Z forces

There are two available buttons which may be used to plot cutting forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot cutting forces. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M = Feed Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.7.2 Feed/Tangential/Radial forces

CUTPRO

Feed/Tangential/Radial forces

There are two available buttons which may be used to plot cutting forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot feed/tangential/radial forces. The results of this plot will look something like the figure below:

Cutting force

In order to toggle through desired results on this plot, the following buttons may be used:

M **—** Feed **Active axis**: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.7.3 Average cutting forces

Average cutting forces

There are two available buttons which may be used to plot cutting forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot average cutting forces. The results of this plot will look something like the figure below:

Blue = X lorce, Green = f lorce, and Red = Z lorce

In order to toggle through desired results on this plot, the following buttons may be used:

M = Feed Active axis: Allows user to select this axis

---Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

CUTPRO

2.2.7.4 Spindle power

CUTPRO

Spindle power

There are two available buttons which may be used to plot cutting forces:

- Plot: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to spindle power. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M m Feed Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.7.5 Spindle torque

CUTPRO

Spindle torque

There are two available buttons which may be used to plot cutting forces:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot spindle torque. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M End Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.)

2.2.7.6 Workpiece deflection

manufacturing automation laboratories

CUTPRO

Workpiece deflection

There are two available buttons which may be used to plot cutting forces:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot workpiece deflection. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M Even Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.7.7 Analytical stability lobes

CUTPRO

Analytical stability lobes

There are two available buttons which may be used to plot cutting forces:

- **Plot**: Plots single result graph (Located under results in simulation)
- Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to analytical stability lobes. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M Even Active axis: Allows user to select this axis

---Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.2.8 Example Files

CUTPRO

Boring/Turning Simulation - Example Files

CutPro comes with various example files for simulation in Boring/Turning.

To access these files, click on the "Examples" button as shown below:

© ■ ₩ + = = =			
Home Tools			
New workspace	Ex01_Static_AxialTurn.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
Dpen 🔁	Ex02_Static_RadialTurn.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
Save	Ex03_Static_MultiInsertBoring.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
Save as	Ex04_Static_AsymmetricBoring.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
Recent	Ex05_Dynamic_AxialTurning.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
Workspace folder	Ex06_Dynamic_RadialTurning.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
Examples	Ex07_Dynamic_MultiInsertBoring.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
About	Ex08_Dynamic_AxialTurnProcessDamp.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		
() Help	Ex09_Turning_CuttingCoefficientIdent.cws C:\Program Files (x86)\CutPro\Examples\Boring Turning		

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3 Drilling Simulation

manufacturing automation laboratories

CUTPRO

CutPro: Drilling Simulation - Overview

The "Simulation Workspace Tree" uses a top-to-bottom workflow process, and there are a

few main tabs which require attention in drilling (for example):

Workspace Define the name and unit system

Simulation mode Static analysis, Analytical stability lobes, Hole shape

Machine & Tool Tooling geometries/orientation and properties

Structural Flexibility Flexibility of the tool, holder, spindle and machine

- Workpiece Material properties
 - Structural Flexibility Flexibility of the workpiece / fixture
- **<u>Cutting Conditions</u>** Speeds, feeds, and operation parameters
- Results Plots of information obtained from the simulation

2.3.1 Workspaces

Workspace 🕘 - Overview

In CutPro the user can define what is called a "Workspace". Inside of this workspace file (*.cws) one can perform multiple simulations simultaneously and compare them to one-another.

Creating, opening and saving a workspace

A workspace may be managed under the file tab, here you may also define the unit system of preference:

Home Tools					
New workspace	Milling Simulations	0	Metric 🔘 Imperial		
Open Open		MAN MANNA		$\sim \sim$	****
Save	pula	- WANNA MARINE	~~	X / X	* * * *
Save as	Analytical stability lobes	Milling process simulation	Stability lobes in time domain	Optimize variable pitch	Cutting coefficient identification
Recent	Boring/Turning Simulatio	ons			
Workspace folder	$\infty \infty$		****	Tool	
Examples		mallaullulu	* * * * *	Workpiece	
About	Static analysis	Analytical stability lobes	Cutting coefficient identification	Cutting forces using slipline fields	
Support	Drilling Simulations				
Help			\bigcirc		
Exit			()		
	Static analysis	Analytical stability lobes	Hole shape		

Unit system in CutPro

Both Metric and Imperial unit systems for a workspace can be swapped/converted anytime:

2.3.2 Managers


```
CUTPRO
```

Managers - Overview

Accessed under the "Tools", the Manager section is mainly used for managing workpiece material definitions and cutting tool files in your tool library

© 🗋 🧁 - 🗒 🛱 =			
	Home	Tools	
R		I	Language English 🔽
Workpiece Material	ToolEditor	Check for updates	
	Manager		Settings

The <u>Workpiece material manager</u> is the central location in CutPro for defining materials and their properties.

Using this function the user can simply load a pre-existing material inside a project

rather than creating it on-the-fly.

- The <u>Tool Editor</u> is used to define and save tool geometry / tools, or perform receptance coupling. Using this function the user can simply load a pre-existing tool inside a project rather than creating it on-the-fly.
- The <u>Check for Updates</u> will do just that, it will notify the user if there is a new CutPro Version and Installation available. CutPro does this automatically, however if you select "Remind me later", you will have to manually update CutPro using this button.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1 Workpiece Material Manager

CUTPRO

Workpiece Material Manager 🔊 - Overview

The Workpiece Material Manager contains two general category of workpiece definitions:

- Standardized workpiece materials (Pre-existing, with CutPro installation) Ex. Aluminum 7050-T6 (AISI Standard Material)
- User-defined workpiece materials (New: Defined by the Customer or by MAL through <u>material</u> <u>characterization services</u>)
 Ex. Secret in-house material

Regardless of which category of material you are using, the following information and data is present.

- <u>Material properties</u>⁽¹⁾
- Coefficient parameters⁽²⁾⁽³⁾
- Limits⁽⁴⁾
- <u>Material Standards</u>

Categories	Material Properties	ه
Aluminum	Material Name	Aluminum 7075-T6
Copper	Category	MAL Materials
Copper [High-Alloy]	Composition	5.5% Zn 2.5% Mg 1.5% Cu 0.3% Cr 1
Heat Resistant	Hardness	150.000 HB
Iron [Chilled Cast] Iron [Compacted Graphite] Iron [Grey Cast]	Density	2.810 g/cm ³
	Thermal Conductivity	130.000 W/mK
	Specific Heat Capacity	960.000 J/kgK
Iron [Malleable Cast]	Youngs Modulus	7.20e+010 N/m ²
Iron [Nodular Cast]	Impact Strength	0.000 N/m ²
Iron [Nodular SG]	Elongation	0.110 %
MAL Materials	Reduction in Area	0.000 %
Aluminum 7075-T6 [150]	Electrical Conductivity	1.94e+007.5/m
Aluminum 356.0-T6 [73]	Condition	1010-0010/11
AISI P20 Mold Steel [300] Aluminum 6061-T6 [95] Aluminium 7050-T74 [147] Alsi 4340 Steel [217] Aluminum 7050-T7451 Low Speed V<200 m/min [140] Aluminum 7050-T7451 [140]	Tensile Strength	5.72e+008 N/m ²
	Yield Strength	5.03e+008.N/m ²
	Shear Strength	3 31e+008 N/m ²
	Heat Treatment	5510-0001011
	Melting Point (Low)	477 000 °C
	Melting Point (High)	635,000 °C
Titanium Alloy Ti6Al4V [340]	Coefficient of Thermal Expansion	25.200 µm/m-°C
NRC - MDF		
CAST Iron C450	(0
Gray Cast iron [75]	Limits	e
Titanium Alloy Ti6Al4V [340]	Chip Thickness (min)	0.000 mm
Inconel 718 [245]	Chip Thickness (max)	0.000 mm
Inconel 625 [190]	Cutting Speed (min)	0.000 m/min
Niobium [80]	Cutting Speed (max)	0.000 m/min
Thermo-Span Superalloy [340]	Rake Angle (min)	0 *
Waspaloy [351]	Rake Angle (max)	0 *
AISI 630 Steel [352]		
4 [] >	Material Standards	G

- (1) Material properties are only used for reference, these properties are not meaningful for machining simulation
- (2) Coefficient parameters are only shown for user-defined workpiece materials

Workniece Material Man

- (3) **Coefficient parameters** are <u>the only numbers entered into the Material Manager which change simulation results--they</u> <u>are essential for accurate simulations</u>
- (4) Limits affect the range in which the force model was created, however these entries are not used within CutPro calculations.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.3.2.1.1 Material properties

CUTPRO

Material properties

The *"Material Properties"* tab displays the specifications of the material given in either unit system:

- <u>Material Properties [Metric units]</u>
- <u>Material Properties [Imperial units]</u>

*Units may be toggled at any time in the Workpiece Material Manager

laterial Properties	
Material Name	
Category	MAL Material
Composition	
Hardness	0.000 HE
Density	0.000 g/cm
Thermal Conductivity	0.000 W/mł
Specific Heat Capacity	0.000 J/kgł
Youngs Modulus	0.000 N/m
Impact Strength	0.000 N/m
Elongation	0.000 %
Reduction in Area	0.000 %
Electrical Conductivity	0.000 S/m
Condition	
Tensile Strength	0.000 N/m
Yield Strength	0.000 N/m
Shear Strength	0.000 N/m
Heat Treatment	
Melting Point (Low)	0.000 °C
Melting Point (High)	0.000 °C
Coefficient of Thermal Expansion	0.000 µm/m-°C

Purpose

The "Material Properties" section is primarily used for reference in order to better understand how the material behaves. These properties are not used in CutPro's engine, this is due to the fact that many tests used to identify these properties are far different than machining. For example, the strain rates of the material under machining are extremely high in comparison to that of a tensile test.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.1.1 Metric units_2

manufacturing automation laboratories				CUTPRO
Material properties - METRIC units				
Matarial nama		Material Pro	operties	۲
		Material	lame	Aluminum 7075-T6
0		Category	varre	MAL Materials
Category		Composit	ion	5.5% Zn, 2.5% Mg, 1.5% Cu, 0.3% Cr, 1
• ···		Hardness		150.000 HB
Composition		Density		2.810 g/cm³
		Thermal C	Conductivity	25.200 W/mK
Hardness	[<i>HB</i>]	Specific H	leat Capacity	960.000 J/kgK
	[, ,2]	Youngs N	lodulus	7.20e+010 N/m ²
Donoitu	[g/cm ³]	Impact St	rength	0.000 N/m ²
Density		Elongation	n	0.110
		Reduction	n in Area [%]	0.000
Thermal	[W/mK]	Electrical	Conductivity	1.94e+007 S/m
Conductivity		Condition	1	
Conductivity		Tensile St	rength	5.72e+008 N/m ²
0		Yield Stree	ngth	5.03e+008 N/m ²
Specific Heat	[//kaK]	Shear Stre	ngth	3.31e+008 N/m ²
Capacity	[J/Ng/N]	Heat Trea	tment	
1 3		Melting P	oint (Low)	477.000 °C
Vounas Modulus [N/m2]			oint (High)	635.000 °C
roungs modulus [w/m-]			nt of Thermal Expansion	0.000 μm/m-°C

Impact Strength	[<i>N/m</i> ²]
Elongation	
Reduction in Area	[%]
Electrical Conductivity	[S/m]
Condition	
Tensile Strength	[<i>N/m</i> ²]
Yield Strength	[N/m²]
Shear Strength	[<i>N/m</i> ²]
Heat Treatment	
Melting Point (Low)	[°C]
Melting Point (High)	[°C]
Coefficient of Thermal Expansion	[µm/m-°C]

2.3.2.1.1.2 Imperial units_2

Material properties - IMPERIAL units

Material name

Category

Composition

Hardness	[<i>HB</i>]
Density	[lb/in³]
Thermal Conductivity	[BTu/hr-ft°F]
Specific Heat Capacity	[BTu/lb°F]
Youngs Modulus	[lbf/ft ²]
Impact Strength	[lbf/ft ²]
Elongation	
Reduction in Area	[%]
Electrical Conductivity	[S/ft]
Condition	
Tensile Strength	[lbf/ft ²]
Yield Strength	[lbf/ft ²]
Shear Strength	[lbf/ft ²]
Heat Treatment	
Melting Point (Low)	[°F]
Melting Point (High)	[°F]
Coefficient of Thermal Expansion	[in/ft°F]

laterial Properties	(
Material Name	Aluminum 7075-T6
Category	MAL Materials
Composition	5.5% Zn 2.5% Mg 1.5% Cu 0.3% Cr 1
Hardness	150.000 HB
Density	0.102 lb/in ³
Thermal Conductivity	14.560 BTu/hr-ft°F
Specific Heat Capacity	0.229 BTu/lb°F
Youngs Modulus	1.04e+007 lbf/ft ²
Impact Strength	0.000 lbf/ft ²
Elongation	0.110
Reduction in Area [%]	0.000
Electrical Conductivity	5918446.599 S/ft
Condition	
Tensile Strength	82961.570 lbf/ft ²
Yield Strength	72953.968 lbf/ft ²
Shear Strength	48007.482 lbf/ft ²
Heat Treatment	
Melting Point (Low)	858.600 °F
Melting Point (High)	1143.000 °F
Coefficient of Thermal Expansion	0.000 in/ft°F

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.2 Coefficient parameters

CUTPRO

Coefficient parameters

The *"Coefficient parameters"* tab offers 9 different force models which may be used to characterize user-defined materials.

METRIC Units

- Average cutting coefficient model
- Orthogonal to oblique model
- Exponential chip thickness model
- <u>Semi-mechanistic model</u>
- <u>Sandvik model</u>
- Kienzle model
- <u>Rake face model</u> *Imperial Units are not supported for Force Models

Coefficient Para	meters	٨
Force Model		Rake Face Model
Kte (N/mm)	0	24.76
Kre (N/mm)	0	27.36
Kae (N/mm)	0	0
Ku (N/mm²)	0	1000.78
Kv (N/mm²)	0	1526.5514

Purpose

The "Coefficient parameters" section is used for defining a force model for a user material⁽¹⁾. The force model consists of constants or equations that are used in CutPro's engine. Using dynamometers and experiments, the material is machined and force data is collected. This data i used in constructing a force model which characterizes how the material behaves under various machining conditions. The model is then used to calculate cutting forces, torque, power and so on. If there are any inaccuracies with this model (material characterization), the simulations in CutPro will be completely wrong. If you are working with your own custom material and are not familiar with the science behind this, we encourage customers to contact MAL Inc for assistance.

(1) Coefficient parameters are only shown for user-defined workpiece materials

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.2.1 Average cutting coefficient model [Metric]

CUTPRO

Equations:

Average cutting coefficient model

 $dF_t = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$

 $dF_r = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$

 $dF_a = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$

Paramotors:

ralameters.	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.2.2 Orthogonal to oblique model [Metric]

CUTPRO

Orthogonal to oblique model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{tc} = \frac{\tau}{\sin \varphi_n} \frac{\cos(\beta_n - \alpha_n) + \tan \eta_c \sin \beta_n \tan i}{c}$$
$$K_{rc} = \frac{\tau}{\sin \varphi_n \cos i} \frac{\sin(\beta_n - \alpha_n)}{c}$$
$$K_{ac} = \frac{\tau}{\sin \varphi_n} \frac{\cos(\beta_n - \alpha_n) \tan i - \tan \eta_c \sin \beta_n}{c}$$
$$c = \sqrt{\cos^2(\varphi_n + \beta_n - \alpha_n) + \tan^2 \eta_c \sin^2 \beta_n}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

$^{ au}$ ("t"): shear stress [N/mm²]	ϕ_n ("f"): shear angle [°]
β _n ("b"): friction angle [°]	α _n : rake angle [°]
$^{\eta}$: chip flow angle [°]	<i>i</i> : helix angle [°]

2.3.2.1.2.3 Exponential chip thickness [Metric]

manufacturing automation laboratories

CUTPRO

Exponential chip thickness

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$
$$K_{tc} = KT \cdot h^{-p}$$
$$K_{rc} = KR \cdot KT \cdot h^{-q}$$
$$K_{ac} = KA \cdot KT \cdot h^{-r}$$

Parameters:

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]

<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]	
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]	
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]	
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]	
<i>KT</i> : tangential shearing coef. parameter	<i>p :</i> tangential chip thickness order	
<i>KR</i> : radial shearing coef. parameter	<i>q :</i> radial chip thickness order	
KA : axial shearing coef. parameter	<i>r :</i> axial chip thickness order	

2.3.2.1.2.4 Semi-mechanistic model [Metric]

CUTPRO

Semi-mechanistic model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{tc} \cdot h \cdot dz$$
$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$
$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$

$$K_{tc} = k_n \Big[\cos \alpha_n + k_f \cos \eta \sin \alpha_n + k_f \tan i \sin \eta \Big]$$

$$K_{rc} = k_n \Big[-\frac{\sin \alpha_n}{\cos i} + k_f \cos \alpha_n \frac{\cos \eta}{\cos i} \Big]$$

$$K_{ac} = k_n \Big[\tan i \cos \alpha_n - k_f \sin \eta + k_f \tan i \cos \eta \sin \alpha_n \Big]$$

Parameters:		
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]	
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]	
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]	
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]	
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]	
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]	
α_n : rake angle [°]	<i>k_n</i> : cutting pressure on rake face	

209

CUTPRO

<i>i</i> : helix angle [°]	k_{f} : cutting pressure rate on flank face
^η : chip flow angle [°]	

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.2.5 Sandvik model [Metric]

manufacturing automation laboratories

Sandvik force model

Equations:

$$dF_t = K_{tc} * h * dz$$

$$dF_r = K_{rc} * h * dz$$

$$dF_a = K_{ac} * h * dz$$

$$K_{tc} = K_t * h^{-p}$$

$$K_{rc} = K_c * h^{-q}$$

$$K_{ac} = K_r * h^{-r}$$

Parameters:

dF_t : differential tangential force [N]	
<i>dF_r</i> : differential radial force [N]	
<i>dF_a</i> : differential axial force [N]	
	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]
<i>dZ</i> : differential axial depth of cut [mm]	<i>K_{rc}</i> : radial shearing coefficient [N/mm²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]

CUTPRO

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.2.6 Kienzle model [Metric]

manufacturing automation laboratories

Kienzle force model

Equations:

$$dF_{t} = K_{te} \cdot dS + K_{te} \cdot h \cdot dz$$

$$dF_{r} = K_{re} \cdot dS + K_{rc} \cdot h \cdot dz$$

$$dF_{a} = K_{ae} \cdot dS + K_{ac} \cdot h \cdot dz$$

$$K_{te} = K_{re} = K_{ae} = 0.0$$

$$K_{te} = K_{u}(\sin \eta \sin i + \cos \eta \cos i \sin \alpha_{n}) + K_{v}(\cos \alpha_{n} \cos i)$$

$$K_{rc} = K_{u}(\cos \alpha_{n} \cos \eta) - K_{v} \sin \alpha_{n}$$

$$K_{ac} = K_{u}(-\sin \eta \cos i + \cos \eta \sin i \sin \alpha_{n}) + K_{v}(\cos \alpha_{n} \sin i)$$

$$K_{u} = K_{u_{1,1}}h^{(-u)}$$

$$K_{v} = K_{v_{1,1}}h^{(-v)}$$

Parameters:	
<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dS</i> : differential cutting edge length [mm]	<i>K_{tc}</i> : tangential shearing coefficient [N/ mm²]

<i>dZ</i> : differential axial depth of cut [mm]	K_{rc} : radial shearing coefficient [N/mm ²]
<i>h</i> : chip thickness [mm]	<i>K_{ac}</i> : axial shearing coefficient [N/mm²]
α_n : rake angle [°]	K_u : cutting pressure parallel to rake face
<i>i</i> : helix angle [°]	K_V : cutting pressure normal to rake face
$^{m \eta}$: chip flow angle [°]	<i>K_{u1.1}</i> : Coefficient parallel to rake face
<i>u:</i> parallel to rake face chip thickness order	<i>K_{v1.1}</i> : Coefficient normal to rake face
<i>v:</i> normal to rake face chip thickness order	

2.3.2.1.2.7 Rake face model [Metric]

manufacturing automation laboratories

Rake face force model

Equations:

$$dF_u = K_u h \, dz$$

$$dF_{v} = K_{v}h \, dz$$

$$\begin{bmatrix} dF_r \\ dF_t \\ dF_a \end{bmatrix} = [A] \begin{bmatrix} dF_u \\ dF_v \end{bmatrix} + dS \begin{bmatrix} K_{re} \\ K_{te} \\ K_{ae} \end{bmatrix}$$

Parameters:

1)

CUTPRO

<i>dF_t</i> : differential tangential force [N]	<i>K_{te}</i> : tangential edge force coefficient [N/ mm]
<i>dF_r</i> : differential radial force [N]	<i>K_{re}</i> : radial edge force coefficient [N/mm]
<i>dF_a</i> : differential axial force [N]	<i>K_{ae}</i> : axial edge force coefficient [N/mm]
<i>dF_u</i> : differential friction force [N]	K_u : Friction coefficient on the rake face [N/mm ²]
<i>dF_V</i> : differential normal force [N]	<i>K_V</i> : Normal coefficient on the rake face [N/mm²]
<i>dz</i> : differential axial depth of cut [mm]	<i>h</i> : chip thickness [mm]
<i>dS</i> : differential cutting edge length [mm]	A : Transformation matrix between the rake face CS and RTA CS

2.3.2.1.3 Limits

CUTPRO

Limits

The "Limits" tab displays the limits of the material characterization given in either unit system:

imits	(
Chip Thickness (min)	0.050 mm
Chip Thickness (max)	0.300 mm
Cutting Speed (min)	500.000 m/min
Cutting Speed (max)	3000.000 m/min
Rake Angle (min)	0 °
Rake Angle (max)	16 °
imits	
Chip Thickness (min)	0.000 in
Chip Thickness (max)	0.004 in
Cutting Speed (min)	9.843 ft/min
Cutting Speed (max)	154.199 ft/min
Rake Angle (min)	2 °
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	Metric	Imperial
Chip	mm	in
Thickness		
Cutting Speed	m/min	ft/min
Rake Angle	0	0

*Units may be toggled at any time in the Workpiece Material Manager

Purpose

The "Limits" section is used for defining the limits of user-defined material characterization models, or for viewing the limits of provided material characterization models. These values determine the conditions in which the material was characterized. For example, in the above test, perhaps the following was done:

Chip Thickness: 0.050 mm, 0.100 mm, 0.150 mm, 0.200 mm, 0.250 mm, 0.300 mm. Rake Angles: 0°, 4°, 8°, 12°, 16°. Cutting Speeds: 500 m/min, 1000 m/min, 1500 m/min, 2000 m/min, 2500 m/min, 3000 m/min

This allows the material to be defined for various feeds, rake angles and speeds. As a result, you can expect fully accurate simulations within these min and max ranges. If your simulation is out of range, for example rake 18, you can still expect to see a good accuracy. It is up to the user to decide how suitable the material limits are based on the application. If you require assistance on this topic, you can contact <u>MAL's support</u> team within CutPro.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.1.4 Material standards

manufacturing automation laboratories

CUTPRO

Material standards

The *"Material standards"* tab displays the material standards which the selected material belongs in, and changes the name of the material based on the selected standard. The following standards are available:

Material Standards										
▼	DIN-nr SS	₩nr. ₩ AFNOR	I BS I UNI	TIS	SAE	AISI				
DIN-nr : German Institute for Standardization # (Deutsches Institut für Normung e.V.) Wnr. : German material number (Werkstoffnummer) BS: British Standards										
EN: SAE:	European Committee for Standardization Society of Automotive Engineers									
AISI: SS:	American Iron and Steel Institute Swedish Standards Institute (Svensk Standard Standardisering)									

AFNOR: French national organization for standardization (Association Française de Normalisation)

- UNI: Italian National Standards Institute (Ente Nazionale Italiano di Unificazione)
- JIS: Japanese Industrial Standards (日本工業規格)
- UNE: Spanish Material Standards (Una Norma Española)
- CMC: Coromant Material Classification (Sandvik)

Purpose

The "Material standards" section is simply used to filter materials by standards. Not every material is available in all standards, for example:

DIN X5CrNiCuNb16-4 [352]		Material Standards			
CMC 05.12/15.12 [352]					
DIN C53G [241]		🗹 DIN-nr 🗹 Wnr. 🗹 BS 🛛 🗹 EN 📝 SAE 📝 AISI			
DIN AlSi5Cu3Mn [175]		SS AFNOR UNI JIS UNF CMC			
Alumec 89 [175]	7				

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.2.2 Check for Updates

Check for updates S - Overview

Home Tools
 Home Tools
 ToolEditor Check for updates
 Manager Settings

Click on the 'Check for updates' button to see if a new CutPro version has been released:

1) If a new version isn't available

CutPro will tell you your current version and tell you that it's up-to-date.

2) If a new version is available

CutPro will show an update prompt along with the update contents.

3) If you cannot update at all

Please <u>contact us</u> if the update button is not visible in CutPro although you have an older version. This likely means that your Updates have expired.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories Inc.

2.3.3 Simulation Modes

CUTPRO

Simulation Modes 🔩 - Overview

Inside of the active Workspace, the user can define many simulations, and also various simulation modes may be selected:

- Static Analysis
- Analytical stability lobes

Useful Functions for Simulation

- + Add: Add a new simulation in the active workspace
- **Remove:** Removes selected simulation in the active workspace
- Duplicate: Duplicates selected simulation in the active workspace
Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.3.1 Static analysis

CUTPRO

Static analysis

Workspace Tree		
Metric Drilling Workspace A B Static analysis: CutPro	: (1 item)	•
Properties		
Simulation <mode></mode>		
▲ General		
Name	CutPro	
Mode	Static analysis	T
	Static analysis	
	Analytical stability lobes	
Mode Simulation mode Static analysis Simulates static cutting forces		

What is this?

A static (no vibration / rigid) drilling process simulation which provides the user the following results:

4	🔀 Results	>>
	Cutting Forces	>
	🗹 Spindle Torque	>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.3.2 Analytical stability lobes

Analytical stability lobes

Workspace Tree				
Metric Drilling Workspa	ace (1 item)			
Static analysis: CutPr	ro 🔻			
Properties				
Simulation <mode></mode>				
General				
Name	CutPro			
Mode	Analytical stability lobes			
	Static analysis			
	Analytical stability lobes			
Mode				
Simulation mode				
Analytical stability lobes	within a spindle speed range			
calculates the stability lobes	within a spinule speed range			

What is this?

Analytical stability lobes provide the user with what is called a "Stability Pocket", which denotes a productive location for chatter-free cutting:

This is a fast analytical stability lobe prediction solved in a frequency domain. It generates the stability lobes by indicating the axial depth of cut and spindle speeds for a fixed width of cut.

Additional Features:

Process damping (Available for certain materials only)

Heat resistant materials such as titanium and steel alloys that are frequently used in thin walled components can only be cut at low cutting speeds.

When machining these materials at low speeds, it is known that the chatter stability limit increases due to additional damping caused by the process.

This phenomenon is called process damping. Due to the sharpness of the cutting edge, part of the chip is forced to go under the tool and causes interference on the tool clearance flank.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4 Machine & Tool

```
manufacturing
automation
laboratories
```

Machine & Tool 🎤 - Overview

Here the user may select/edit properties related to the machine & tool, such as:

- <u>Cutter geometry</u>
- <u>Structural flexibility</u>

W	orkspace Tree						
	🔺 🔑 Machine and Tool	A					
🔷 Cutter Geometry							
📦 Structural Flexibility 🔍 👻							
Pro	Properties						
C	utter Properties						
4	General						
	Cutter Type	Twist 🔻					
	Number of Flutes	2					

Begin by selecting a <u>cutter type</u>, followed by entering the required number of flutes (if applicable).

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.)

2.3.4.1 Cutter geometry

CUTPRO

Machine & Tool 🎤 - Cutter type 🔍

In **CUTPRO** drilling there are four types of cutters which can be simulated:

- Twist drill
- Point thinning drill
- Arbitrary edge drill

Workspace Tree					
🔺 🔑 Machine and Too	I				
📦 Cutter Geometry					
💊 Structural Flexibility 🔻					
Properties					
Cutter Properties					
4 General					
Cutter Type	Twist	•			
Number of Flutes	2				

**The <u>cutter geometry</u> window changes according to the tool type selected under <u>machine &</u> <u>tool</u>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4.1.1 Twist drill

CUTPRO

Cutter geometry Twist drill

Twist drill geometry can be defined under the Cutter Geometry tab **can only have 2 flutes

Demonstration	Workspace Tree	
	▲ Machine and Tool	A
	Utter Geometry	
CEA TA	Structural Flexibil	ity v
	Properties	
	Cutter Geometry	
	Parameter	
₩T	Web thickness	0.750 mm
	Tip angle	59.000 °
CEA Chisal adda angla	Diameter	16.000 mm
WT Web thickness	Chisel edge angle	120.000 °
HA - Helix andle	Helix angle	30.000 °
$T\Delta$ - Tip angle	Clearance angle	14.000 °
D - Diameter	Lip eccentricity	
	X	0.000 mm
	Y	0.000 mm
	Tip eccentricity	
	X	0.000 mm
	Y	0.000 mm

Based on the input geometry, an interactive figure will be generated for

visual aid:

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4.1.2 Point thinning drill

CUTPRO

Cutter geometry Point thinning drill

Point thinning drill geometry can be defined under the Cutter Geometry tab **can only have 2 flutes

Based on the input geometry, an interactive figure will be generated for visual aid:

Graph Interactions:

- o Pan: Center click and Drag
- o Rotate: Left click and Drag
- o Zoom: Scroll In/Out
- Snap: Click on cube surface to snap to desired view

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4.1.3 Arbitrary edge drill

Cutter geometry • - Arbitrary edge drill

Arbitrary edge drill geometry can be defined under the Cutter Geometry tab

Demonstration	Workspace Tree		
(X,YZ),	A 🖉 Machine and Tool		
9XYZ),	📦 Cutter Geometry	/	
00021,	📦 Structural Flexib	ility	*
	Properties		
(X,YZ),	Cutter Geometry		
	A Parameter		
XYZ - Input point (builds cutter)	Diameter	16.000 mm	
	Helix angle	30.000 °	
	Drill head height	3.900 mm	
	Wedge angle	100.000 °	
	A Nodes		
	Node data	Defined = 2	
	Lip eccentricity		
	X	0.000 mm	
	Y	0.000 mm	
	Tip eccentricity		
	X	0.000 mm	
	Y	0.000 mm	

Click on the <u>button</u> botton to access the arbitrary drill editor:

bitrary	Drill Editor				
	Х		γ	Z	
+		Click h	ere to add a new	row	
	0.409576			0.000000	
	1.682240		0.750000	0.224405	
	7.964766		0.750000	3.851623	
* All va Flute	Ilues are in <i>mn</i> Number Diameter	16.000	mm He	fset 0,000 ° V	x t
Appl	y Cancel]	<u>mmj</u> ne	gra [3.900 mm]	YL

Graph Interactions:

Flute Number: Displays the XYZ table corresponding to the selected flute (Flute 1 of 2 in

- Pan: Center click and Drag
 - o Rotate: Left click and Drag
 - **Zoom:** Scroll In/Out
 - Snap: Click on cube surface to snap to desired view

example above)

Offset: Offsets data points from Flute 1 at desired angle

Copy to all: Copies selected Flute Number points to all Flutes

Import/Export: Opens/Saves arbitrary drill in (*.nod) format

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4.2 Structural flexibility

automation laboratories

Machine & Tool 🎤 - Structural flexibility 💚

Machine & Tool simulation models available:

- <u>Rigid model</u> (Static analysis only)
- Drilling Structural Vibrations model (Analytical stability lobes only)

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4.2.1 Rigid model

Structural flexibility • - Rigid machine & tool model

- Effects of machine & tool vibrations are not included in the simulation
- Machine/cutter is assumed rigid
- Simulation will be under static conditions.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.4.2.2 Structural vibrations model

CUTPRO

CUTPRO

Structural flexibility . - Structural vibrations machine & tool

model

Machine & tool has structural flexibility

X Y Z Ø X Y Z Ø X Y Z Ø X X Z Ø Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y X Y Z Y Z Z Z Z Z Z Z Z Ø ØZ ØØ Øz ØØ Ø ØZ ØØ Rigid Ø Displacement 1.000 Ø ØØ ØZ ØØ Rigid Ø Displacement 1.000 Ø ØØ ØZ ØØ Rigid Ø Displacement 1.000 Ø <th>ransfer Function Matri</th> <th>ix</th> <th>Direction</th> <th>Filename (FRF)</th> <th>FRF Type</th> <th>Gain</th> <th>Rig</th>	ransfer Function Matri	ix	Direction	Filename (FRF)	FRF Type	Gain	Rig
X Y Z Ø XY C:\ProgramData\MAL\CutPro\Resource\Gyy.frf 101:1000:1 Hz] IDisplacement 1.000			> XX	C:\ProgramData\MAL\CutPro\Resource\Gxx.frf [101:1000:1 Hz]	Displacement	1.000	ſ
X XX XY Z Y YX C\ProgramData\MAL\CutPro\Resource\Gyy.frf 101:1000:1 Hz] Displacement 1.000 I Y YX YY Z Z C C\ProgramData\MAL\CutPro\Resource\Gyy.frf 101:1000:1 Hz] Displacement 1.000 I Z Z Z ZO ZZ C\ProgramData\MAL\CutPro\Resource\Gyz.frf 101:1000:1 Hz] Displacement 1.000 I Z Z Z ZO ZZ C\ProgramData\MAL\CutPro\Resource\Gyz.frf 101:1000:1 Hz] Displacement 1.000 I Z Z Z ZO Rigid Displacement 1.000 I Symmetrical Image: Compared to the second to the	X Y Z	ZΘ	XY	C:\ProgramData\MAL\CutPro\Resource\Gxy.frf [101:1000:1 Hz]	Displacement	1.000	0
Y YX YY C:\ProgramData\MAL\CutPro\Resource\Gyy.frf [101:1000:1 Hz] Displacement 1.000 I Z Z ZZ ZO Rigid Displacement 1.000 I O OZ OO Rigid Displacement 1.000 I Symmetrical OO Rigid Displacement 1.000 I	X XX XY	7	YX	C:\ProgramData\MAL\CutPro\Resource\Gyx.frf [101:1000:1 Hz]	Displacement	1.000	
Z Z Z C:\ProgramData\MAL\CutPro\Resource\Gzz.frf [101:1000:1 Hz] Displacement 1.000 [] Q QZ QQ Rigid Displacement 1.000 [] Q QZ QQ Rigid Displacement 1.000 [] Q QZ Rigid Displacement 1.000 [] Q Rigid Displacement 1.000 []	V VV VV	-	YY	C:\ProgramData\MAL\CutPro\Resource\Gyy.frf [101:1000:1 Hz]	Displacement	1.000	C
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			ZZ	C:\ProgramData\MAL\CutPro\Resource\Gzz.frf [101:1000:1 Hz]	Displacement	1.000	0
O OZ OZ Rigid Displacement 1.000 C Symmetrical OO Rigid Displacement 1.000 C	Z	Z	ZΘ	Rigid	Displacement	1.000	5
Symmetrical	ΘΘ	Z OO	ΘZ	Rigid	Displacement	1.000	5
	Symmetrical		ΘΘ	Rigid	Displacement	1.000	6
	Symmetrical	Z_ 000	00	Rigid Internet	Displacement	1.000	

Dynamics data

• Measured FRF (for analytical stability lobes only)

• Modal/residue data files

X modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.
Y modal/residue file	Uses a file containing modal parameters. These modal parameter files are created using the <u>Modal Analysis</u> program.

• Vibration parameters

This uses the following dynamic parameters. It only allows for a single dominant mode in each of the X- and Y-directions.

Natural frequency	Natural frequency of the system in [Hz]
Damping ratio	Damping ratio for that mode
Stiffness	Stiffness of the system [N/m]

Transfer function values are calculated using following equation in frequency domain:

$$\Phi = \frac{\omega_n^2 k}{\omega_n^2 - \omega^2 + i \, 2\zeta \omega_n \omega}$$

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.)

2.3.5 Workpiece

Workpiece 🧼 - Overview

Under the workpiece category of simulation, the user is to select a workpiece material:

Workspace Tree		
4 🥥 Workpiece		-
4		
Properties		
Workpiece Material < Material>		
 General 		
Material	Aluminum 7075-T6[150]	

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.5.1 Rigid model

Structural flexibility Rigid workpiece model

- Effects of workpiece vibrations are not included in the simulation
- Workpiece is assumed rigid
- Simulation will be under static conditions.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.6 Cutting Conditions

Cutting Condition III - Overview

Turning Mode

The following cutter types must first be selected from "Machine & Tool":

- Twist drilling
- Point thinning drilling
- Arbitrary edge drilling

227

CUTPRO

CUTPRO

Cutting conditions may then be set like so:

Pro	Properties				
С	Cutting conditions				
4	4 General				
Feedrate 0.100		0.100 mm/flute			
	Spindle speed 2500.000 RPM				
	Axial depth of cut (a) 3.000 mm				
	Number of revolutions 20				

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.7 Results

manufacturing automation laboratories

CUTPRO

CUTPRO

Results - Overview

Using graphs in CutPro (Plot Results buttons)

- Forces
 - XYZ cutting forces
- Spindle parameters
- Spindle torque
- Stability lobes
 <u>Analytical stability lobes</u>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.7.1 XYZ cutting forces

manufacturing automation laboratories

X, Y and Z forces

There are two available buttons which may be used to plot cutting forces:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot cutting forces. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

Teed Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.7.2 Spindle torque

CUTPRO

Spindle torque

There are two available buttons which may be used to plot cutting forces:

Plot: Plots single result graph (Located under results in simulation)

Plot: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to plot spindle torque. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

M **__** Feed Active axis: Allows user to select this axis

---Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.7.3 Analytical stability lobes

manufacturing automation laboratories

Analytical stability lobes

There are two available buttons which may be used to plot cutting forces:

- Plot: Plots single result graph (Located under results in simulation)
- **Plot**: Plot selected result from simulation (Located on main toolbar)

Not all simulations have an option to analytical stability lobes. The results of this plot will look something like the figure below:

In order to toggle through desired results on this plot, the following buttons may be used:

Teed Active axis: Allows user to select this axis

Inactive axis: Disallows user to select this axis

Change color: Changes the color of the graph for specified axis

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.3.8 Example Files

Drilling Simulation - Example Files

CutPro comes with various example files for simulation in Drilling

To access these files, click on the "Examples" button as shown below:

Home Tools					
New workspace	Drilling examples				
Dpen Open	Ex01_DrillingStability_MeasuredFRF.cws C:\Program Files (x86)\CutPro\Examples\Drilling				
Save	Ex02_DrillingStability_ModalFiles.cws C:\Program Files (x86)\CutPro\Examples\Drilling				
Save as	Ex03_DrillingStability_Comparison.cws C:\Program Files (x86)\CutPro\Examples\Drilling				
Recent	Ex04_Static_TwistDrill.cws C:\Program Files (x86)\CutPro\Examples\Drilling				
Wedness filter	Ex05_Static_PointThinningDrill.cws C:\Program Files (x86)\CutPro\Examples\Drilling				
Workspace folder	Ex06_Static_ArbitraryEdgeDrill.cws C:\Program Files (x86)\CutPro\Examples\Drilling				
Examples					
About					
Help					
Exit					

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.4 Modal Analysis

CutPro: Modal Analysis?

CutPro Modules

Modal Analysis is a software module (part of the <u>CutPro software package</u>) that determines the dynamic characteristics of a machine tool system and mode shapes from Frequency Response Functions (FRF).

The structure is first measured at various geometric locations on a system, using transfer function measurement software "MALTF". This involves attaching an accelerometer or laser displacement sensor to one end of the structure, and then impacting it from the other end using an impulse hammer.

What is Modal Analysis used for?

Modal analysis is used for modifying raw Frequency Response Function (FRF) data. It is used to simplify the FRF by removing unnecessary modes and applying a curve-fit to those of interest. This is done by analyzing the frequency data, selecting key modes of interest, applying a curve fit, and exporting this data into either a new <u>Fitted FRF</u> or a <u>Modal Parameters CMP file</u>.

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.1 Information

2.4.1.1 What is Modal Analysis?

MODAL ANALYSIS

What is Modal Analysis?

Modal Analysis is a software module (part of the <u>CutPro software package</u>) that determines the dynamic characteristics of a machine tool system and mode shapes from Frequency Response Functions (FRF).

The structure is first measured at various geometric locations on a system, using transfer function measurement software "MALTF". This involves attaching an accelerometer or laser displacement sensor to one end of the structure, and then impacting it from the other end using an impulse hammer.

What is Modal Analysis used for?

Modal analysis is used for modifying raw Frequency Response Function (FRF) data. It is used to simplify the FRF by removing unnecessary modes and applying a curve-fit to those of interest. This is done by analyzing the frequency data, selecting key modes of interest, applying a curve fit, and exporting this data into either a new <u>Fitted FRF</u> or a <u>Modal Parameters CMP file</u>. These files are then used for machining simulation within <u>CutPro</u>.

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.1.2 License Information

MODAL ANALYSIS

License Information

Manufacturing Automation Laboratories Inc. (MAL) reserves the right to modify or discontinue the software or the software specification identified in this document without notice. MAL advises its customers to obtain the latest version of the software specifications to verify, before placing orders, that the information being relied upon by the customer is current. MAL makes no warranties, expressed or implied, including without limitation the implied warranties of merchantability and fitness for a particular purpose, regarding the software. MAL does not warrant, guarantee or make any representations regarding the use or the results of the use of the software in terms of its correctness, accuracy, reliability, currentness or otherwise. You assume the entire risk as to the results and performance of the software.

In no event will MAL and its directors. officers, employees or agents be liable to you for any consequential, incidental or indirect damages (including damages for loss of business profits, business interruption. loss of business information. and the like) arising out of the use or inability to use the software even if MAL has been advised of the possibility of such damages. MAL's liability to you for actual damages from any cause whatsoever, and regardless of the form of the action (whether in contract, tort (including negligence), product liability or otherwise), shall in no case exceed the invoiced amount paid for the right to use the software and the documentation.

1,284,737. 2005/12/30. MAL

Manufacturing Automation Laboratories, Inc., 2829 Highbury Street, Vancouver, BRITISH COLUMBIA V6R 3T7 Representative for Service! Representant pour Signification: OVEN WIGGS GREEN & MUTALA LLP, SUITE 480 -THE STATION, 601 WEST CORDOVA STREET, VANCOUVER, BRITISH COLUMBIA, V6B1G1

CUTPRO

WARES:

(1) Computer software for use in optimizing the performance of machining equipment.

(2) Machine tools for use in the metal working industry and control systems for such machine tools.

SERVICES:

Consulting in the field of the design and operation of machine tools. Used in CANADA since at least as early as 1999 on wares (1).

Proposed Use in CANADA on wares (2) and on services.

MARCHANDISES:

(1) Logiciels pour l'optimisation du rendement du materiel d'usinage.

(2) Machines-outils pour utilisation dans l'industrie du travail des metaux et systemes de commande pour lesdites machines-outils.

SERVICES:

Consultation en conception et exploitation de machines-outils. Employee au CANADA depuis au moins aussi tot que 1999 en liaison avec les marchandises(1).

Emploi projete au CANADA en liaison avec les marchandises (2) et en liaison avec les services.

Trademarks

Pentium is a trademark of Intel Corporation. Microsoft, MS-DOS are registered trademarks and Windows XP, Windows Vista, Windows 7, and Windows 8 are trademarks of Microsoft Corporation. IBM and PC/AT are registered trademarks of International Business Machines Corporation. All other trademarks are trademarks or registered trademarks of their respective owners

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.1.3 System Requirements

MODAL ANALYSIS

System Requirements

Required hardware and software:

- PC: PC with a Intel/AMD processor with a minimum of 2 cores at 3.0Ghz
- Operating System: Windows 7, 8 or later.
- Memory: We recommend a minimum of 6GB of RAM.
- License: Will be provided when the software is purchased.

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2 User Interface Overview

MODAL ANALYSIS

User Interface Overview

Modal Analysis consists of a file menu, home menu, and two interface types.

>The "File" menu can be found in the Top Left corner of the software, just

underneath the Modal Analysis Icon:

N: 11 15 15 15 15 15	
Home	
New project	🔘 Metric 🔘 Imperial
Dpen Open	Bar (1D) One dimension (1D) bar projects are used for instances where one end of the measured item is fixed, and the other end is free (not being held)
Save	
Save as	Plane (2D) Planar (2D) projects are used for instances where a surface is being measured.
Workspace folder Examples	Flexible Tool FRF Flexible tool frequency response function (FRF) projects are for instances where a 1D Bar setup with a large overhang is greatly larger than the diameter of the bar.
Support	
Exit	

The "Home" menu can be found in the Top Left corner by clicking on the Home tab button:

15 🗅 🗁	日日日						
	Home						
Project		Select FRF	Export Fitted	Export	Update	육 Select all 다 Clear	Receptance
Interface	Simple 🔽	Files	FRF	Parameters			Coupling
Settings				Mode sel	ection		

≻The "Int erfa ce" sele ctio n men u can

be
foun
d in
the
Тор
Left
corn
er
by
clicki
ng
on
the
Hom
е
tab
butt
on,
follo
wed
by
the
arro
W
next
to
"Inte
rfac
e":

Simple	The user selects the natural frequency peaks which the software automatically detects.			
Advanc ed	The user defines the left & right area of the natural frequency peak they are interested in.			

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.1 Project Types

MODAL ANALYSIS

Project Types

There are three types of projects to choose from in <u>Modal Analysis</u>. These projects can be created from the <u>File Menu</u>.

All Bar, Plane and Flexible Tool FRF project files are saved as ***.modx** Modal Analysis Project files.

Bar (1D) 🌾

<u>One dimension (1D) bar projects</u> are used for instances where one end of the measured item is fixed, and the other end is free (not being held). *Ex: A bar inside a lathe, without a tailstock.*

Plane (2D) 🚧

<u>Planar (2D) projects</u> are used for instances where a surface is being measured. *Ex: A square workpiece inside a vice.*

Flexible Tool FRF

Flexible tool frequency response function (FRF) projects are for instances where a 1D Bar setup with a large overhang is greatly larger than the diameter of the bar. In these cases, it is near impossible to accurately measure the tip of the 1D Bar setup using an impact hammer or shaker. For this reason, we can estimate the FRF mathematically in this project type. *Ex: A 8mm diameter solid endmill with* 50mm stickout from the shrinkfit toolholder face. Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.1.1 Bar (1D)

manufacturing automation laboratories

MODAL ANALYSIS

Project Types - Bar (1D)

Bar (1D)

One dimension (1D) bar projects are used for instances where one end of the measured item is fixed, and the other end is free (not being held). *Ex: A bar inside a lathe, without a tailstock.*

Select FRF Files Window

The graphics window in <u>Modal Analysis</u> is response and click-sensitive. The graphics window for 1D Bar simulations is as follows:

Window Legend

New File

- Browse / FRF File: Uses windows explorer to find the desired FRF file (*.frf, *.mtb or *.uff files) by clicking browse (Browse... button)
- File Type: Defines the file type of all FRF files within the project (*.frf, *.mtb or *.uff)
- FRF Location: Defines the location of the measurement point (mm or in)
- Add: Adds the select FRF file to the project (Add button): When an FRF is added, if the unit is unknown, Modal Analysis will prompt this window:

Click "Copy settings to all newly added FRF files" to apply the settings to all FRFs added.

Please select the supported unit type of the file input below:				
Type: Displacement				
Unit:	m/N			
Copy settings to all newly added FRF files				
Confirm				

• Clear Unit Settings: Clears the FRF Type / Unit Type settings which was previously defined as shown above (Clear Unit Settings button)

General Properties

- **Measurement Type:** The user needs to define how the measurement was performed (Fixed Measurement Point or Fixed Impact Point)
- At: If two or more files are added, the user needs to define where the impact (hammer) and measurement (accelerometer) locations are (1 to ...)
- File Type: Defines the file type of all FRF files within the project (*.frf, *.mtb or *.uff)
- Frequency Range(Hz): Defines the range of frequencies which you are interested in (These values are limited by the FRF file's frequency range, and must be within them)
- Units: Defines the unit system of the project (Metric or Imperial)

• Gain Constant: Defines the gain constant of the measured file (Metric or Imperial)

FRF Table

- Index: Defines the number of the file (1 to ...)
- Z: Defines the location of the file. These values can be modified within the table at any time. (mm or in)
- FRF Type: Defines the type of FRF measurement (Displacement or Acceleration)
- FRF Unit: Displays the unit system of the FRF file contents
- File Name: Defines the name and location of the FRF file (*.frf, *.mtb or *.uff files), the files can be selected from the table as well (... button)
- Delete: Allows the user to delete an FRF from the table (x button)

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.1.2 Plane (2D)

manufacturing automation laboratories

MODAL ANALYSIS

Project Types - Plane (2D)

Plane (2D) 🚧

Planar (2D) projects are used for instances where a surface is being measured. *Ex: A square workpiece inside a vice.*

Select FRF Files Window

The graphics window in <u>Modal Analysis</u> is response and click-sensitive. The graphics window for 2D Plane simulations is as follows:

Window Legend

New File

- FRF File / Browse: Uses windows explorer to find the desired FRF file (*.frf, *.mtb or *.uff files) by clicking browse (Browse... button)
- File Type: Defines the file type of all FRF files within the project (*.frf, *.mtb or *.uff)
- FRF Location: Defines the location of the measurement point in the X and Y coordinates (mm or in)
- Add: Adds the select FRF file to the project (Add button): When an FRF is added, if the unit is unknown, Modal Analysis will prompt this window: Click "Copy settings to all newly added FRF files" to apply the settings to all FRFs added.

• Clear Unit Settings: Clears the FRF Type / Unit Type settings which was previously defined as shown above (Clear Unit Settings button)

General Properties

- **Measurement Type:** The user needs to define how the measurement was performed (Fixed Measurement Point or Fixed Impact Point)
- At: If two or more files are added, the user needs to define where the impact (hammer) and measurement (accelerometer) locations are (1 to ...)
- FRF Type: Defines the type of FRF measurement (Displacement or Acceleration)
- Frequency Range(Hz): Defines the range of frequencies which you are interested in (These values are limited by the FRF file's frequency range, and must be within them)
- Units: Defines the unit system of the project (Metric or Imperial)
- Gain Constant: Defines the gain constant of the measured file (Metric or Imperial)

FRF Table

- Index: Defines the number of the file (1 to ...)
- X & Y: Defines the planar location of the file. These values can be modified within the table at any time. (mm or in)
- FRF Type: Defines the type of FRF measurement (Displacement or Acceleration)
- FRF Unit: Displays the unit system of the FRF file contents
- File Name: Defines the name and location of the FRF file (*.frf, *.mtb or *.uff files), the files can be selected from the table as well (... button)

• Delete: Allows the user to delete an FRF from the table (x button)

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.1.3 Flexible Tool FRF

manufacturing automation laboratories

MODAL ANALYSIS

Project Types - Flexible Tool FRF

Flexible Tool FRF

Flexible tool frequency response function (FRF) projects are for instances where a 1D Bar setup with a large overhang is greatly larger than the diameter of the bar. In these cases, it is near impossible to accurately measure the tip of the 1D Bar setup using an impact hammer or shaker. For this reason, we can estimate the FRF mathematically in this project type.

Ex: A 8mm diameter solid endmill with 50mm stickout from the shrinkfit toolholder face.

Predict H11 (FRF at the tool tip, as if the accelerometer and hammer were both at the tip

After pressing OK, the user must apply a curve fit via the Update button, on the desired modes. From there, the user can then Predict H11.

*H11 is the predicted FRF at the tool's tip: Accelerometer and hammer are both at the tip of the tool.

Home						
Project Flexible tool					Select all	H11
Unit Metric	Select ERF	Evport Eitted	Evport		Clear	Dredict
Interface Simple	Files	FRF	Parameters	opuate		H11
Settings			Mod	le selection	n	

Select FRF Files Window

The graphics window in <u>Modal Analysis</u> is response and click-sensitive. The graphics window for Flexible Tool FRF simulations is as follows:

(Index FRF Type FRF Unit File Name			H12 (Accelerometer Position 1 / Hammer Position 2) FRF File: VMC_H12.frf Browse File Type: ASCII (*.frf) H22 (Accelerometer Position 2 / Hammer Position 2) FRF File: VMC_H22.frf Browse File Type: ASCII (*.frf) Clear Unit Settings General Properties FRF Type: Displacement Frequency Range(Hz): 200 To 8000 Units: Metric Gain Constant: 1	
	Index	FRF Type	FRF Unit	File Name	Clear
•	12	Displacement	m/N	\\192.168.0.20\Temp\ModalTestProj	cts\4) Flexible tool measurements\Data\VMC_H12.frf 🔜 🗙
	22	Displacement	m/N	\\192.168.0.20\Temp\ModalTestProje	cts\4) Flexible tool measurements\Data\VMC_H22.frf 🛑 🛛 🛛
				ОК	Cancel

Window Legend

H12 / H22

- Browse / FRF File: Uses windows explorer to find the desired FRF file (*.frf, *.mtb or *.uff files) by clicking browse (Browse... button)
- File Type: Defines the file type of all FRF files within the project (*.frf, *.mtb or *.uff)

General Properties

When an FRF is added, if the unit is unknown, Modal Analysis will prompt this window:

Click "Copy settings to all newly added FRF files" to apply the settings to all FRFs added.

- Clear Unit Settings: Clears the FRF Type / Unit Type settings which was previously defined as shown above (Clear Unit Settings button)
- FRF Type: Defines the type of FRF measurement (Displacement or Acceleration)
- Frequency Range(Hz): Defines the range of frequencies which you are interested in (These values are limited by the FRF file's frequency range, and must be within them)
- Units: Defines the unit system of the project (Metric or Imperial)
- Gain Constant: Defines the gain constant of the measured file (Metric or Imperial)

FRF Table

- Index: Defines the location of the file (H12 or H22)
- FRF Type: Defines the type of FRF measurement (Displacement or Acceleration)
- FRF Unit: Displays the unit system of the FRF file contents
- File Name: Defines the name and location of the FRF file (*.frf, *.mtb or *.uff files), the files can be selected from the table as well (... button)

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.2 Simple Modal Analysis

MODAL ANALYSIS

Simple Interface

Inside
<u>Modal</u>
Analys

<u>is</u> , you can switch betwe en interfa
ce types at any given time.
>The "Inte rfac e" sele
ctio n men u can
be foun d in the Top
Left corn er by clicki
on the Hom e tab
n, follo wed by
the arro w next to
ïnte

rface

":

👫 🗋 🗁 🗒 🖷 🔻					
	Home				
Project	Flexible tool				
Unit	Metric	Salact EPE			
Interface	Simple 🔽	Files			
9	Simple				
C Freque	Advanced				

Simple	The user selects the natural frequency peaks which the software automatically detects.
Advanc ed	The user defines the left & right area of the natural frequency peaks they are interested in. Modes are also automatically detected and listed under the found modes table.

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.2.1 Menus & Buttons

•=

Simp le Inter face
- Men us & Butt ons
Butto ns & Boxe s:
• Proj

	ect: Disp lays the curr ent proj ect type
•	Unit Disp lays the curr ent unit syst em
•	Inte rfac e: Swit ch bet wee n Sim ple/ Adv anc ed via the drop - dow n arro W
•	Sele ct FRF

File

s:

	Disp lays the Sele ct FRF dial ogu e. This wind ow vari es bas ed on Proj ect Typ es for deta ils.
•	Exp ort Fitt ed FRF : The fitte d FRF file *.frf (pur ple)
	is exp orte d. Ref er to <u>Exp</u> orte d File s for deta ils.
---	---
•	Exp ort Par ame rers : The fitte d CM P file *.c mp (pur ple) is exp orte d. Ref er to Exp orte d File s for deta ils.

• Upd

ate:

	Appl ies a curv e-fit bas ed on sele cted mod es.
•	Sele ct All: Sele cts all foun d mod es.
•	Clea ar: Clea rs all sele cted mod es.
•	Pre dict H11 (Fle xibl e Too I FRF mo de only

): Calc
ulat
es
the
pred
icte
d
Freq
uen
Doc
nes
se
Fun
ctio
n at
the
tool'
s tip
bas
ed
on
the
curv
dare
(gre en)

2.4.2.2.2 Select FRF Files Window

Simple Interface - Select FRF Files Window

The Select FRF Files window is fully dependent on which project type you choose:

- <u>Bar (1D)</u>
- Plane (2D)

Flexible Tool FRF

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.2.3 Found Modes / Optimized Modes

manufacturing automation laboratories MODAL ANALYSIS

Simple Interface - Found Modes / Optimized Modes

The modes tables in the simple and advanced interface are identical. It is used for displaying found modes detected in the software, and also for displaying modes which have curve-fitting applied to them.

Found Modes - Buttons & Boxes:

Frequency	Amplitude	
20	0.33	
62	0.02	
52	0.37	
92	0.28	
80	0.06	

- Frequency: Displays the found modes (frequencies) in the table
- **Amplitude:** Displays the amplitude of the correspond mode (frequency)
- Add: After selecting a mode (frequency) from the table, click Add to add the mode under Optimized Modes
- Select all: Select all modes from the Found Modes table
- Clear: Clears the selected mode(s)

Optimized Modes - Buttons & Boxes:

-Op	otin	nized Modes-						
		Mode No:	Frequency [Hz]	Damping Ratio [%]	Stiffness [N/m]	Mass [kg]	Mode Shape	Delete
	Þ	1	249.51	3.04	2.2213E09	903.790	۲	×
		2	676.74	2.60	2.8859E09	159.618	3	×
		3	806.21	5.17	-3.5805E09	-139.535	3	×
	De	lete All Cop	oy Table					

- Mode No: Displays the mode number of the corresponding mode (#)
- **Frequency:** Displays the frequency value of the corresponding mode (Hz)
- Damping Ratio: Displays the damping ratio of the select mode (%) You may double-click the damping ratio value in the table and edit it. This can be done to improve the curve-fit.
- Stiffness: Displays the stiffness value of the select mode (N/m or lbf/in)
- Mass: Displays the mass corresponding to the select mode (kg or lbs)
- Delete: Deletes the selected mode from the table
- Mode Shape: Displays the mode shape (if that mode is excited) of the selected mode in a unitless display:

2.4.2.2.4 Mode Selection Dialogue

manufacturin automation laboratories MODAL ANALYSIS

Simple Interface - Mode Selection

The modes selection box can be found in the lower left corner of Modal Analysis. It is used for modifying how mounds are detected in the software.

Buttons & Boxes:

- Simple / Advanced: Switch between the Simple / Advanced interface types
- Type: Power Spectrum of Mode Indicator Function or Mode Indicator Function selection options
- Modes: Displays the number of modes found (which are available for curvefitting)
- Frequency Range(Hz): Displays the frequency range of the FRF file(s) used. It also relates to the horizontal spanners found in Power Spectrum / Mode Indicator chart.
- Sensitivity: Used to modify the

automatic mode finder, higher sensitivity finds more modes (main modes), lower sensitivity finds less modes (smaller mode peaks)

 Smoothing Filter: None, Weak, Medium, or Strong - Determines the strength in which smaller modes are ignored/filtered

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.2.5 Frequency Response Charts

MODAL ANALYSIS

Simple Interface - Frequency Response Charts

The Frequency Response Charts are where the user applies curve fitting to the FRF(s):

Buttons & Boxes:

•	X/Y
	Cros
	shai
	r
	curs
	or:
	This
	butto
	n is
	used
	to
	onah
	noint
	point
	Sele
	CLION
	aion
	gine
	highl
	ighte
	d
	(blue
)
	FRF,
	and
	displ
	ays
	the
	X/Y
	locat
	ion
	of
	the
	curs
	or. <u>It</u>
	can
	also
	be
	used
	to
	sele
	ct
	the
	mod
	es
	(vell
	OW

<u>trian</u> gles)

- Pan chart: Used to move the chart in X and Y directions
- Zoom X: Used to define a range along the X axis in which only X values are zoomed (Y values are left un-zoomed)
- Zoom Y: Used to define a range along the Y axis in which only Y values are zoomed (X values are left un-zoomed)
- Zoom in X & Y: Define a window in which to zoom in X and Y
- Save Chart: Saves an image file (*.png, *.bmp or *.jpeg) of the Frequency Response chart
- Copy Chart: Copies the Frequency Response chart as an image
- Print Chart: Prints an image of the Frequency Response chart
- X: States the X location of the mouse arrow cursor
- Y: States the Y location of the mouse arrow cursor
- Magnitude: Displays the FRF as a Magnitude vs. Frequency chart
- **Real:** Displays the real portion of the FRF as a Real vs. Frequency chart
- **Imaginary:** Displays the imaginary portion of the FRF as an Imaginary vs. Frequency chart
- Selected Measurement: Changes the displayed chart to the corresponding measurement FRF number
- Power Spectrum / Mode Indicator: Displays the power spectrum & mode indicator function of the FRF
- Horizontal Spanner Arrows: Filters the FRF to ignore modes at Left (lower) and Right (higher) frequencies
- Vertical Spanner Arrow: Filters the FRF to ignore lower magnitude modes when dragged upwards

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.3 Advanced Modal Analysis

MODAL ANALYSIS

Adva nced Interf ace	
Inside Modal Analy sis, you can switch betwe en interfa ce types at any given time.	
The "Int erfa ce" sele ctio n men u can be foun d in the Top Left corn er by click ing on the Hom	
e tab	

butt
on,
follo
wed
by
the
arro
W
next
to
"Inte
rfac
e":

Simple	The user selects the natural frequency peaks which the software automatically detects.
Advanc ed	The user defines the left & right area of the natural frequency peaks they are interested in. Modes are also automatically detected and listed under the found modes table.

Copyright $\ensuremath{\textcircled{O}}$ 2015 Manufacturing Automation Laboratories Inc.

2.4.2.3.1 Menus & Buttons

Adva nced Interf ace -Men us & Butt 265

ons	
alers reco	
Butto ns & Boxe :	S
Pro ect: Displays the curr ent proj ect type	j 5 5
• Uni : Disp lays the curr ent unit syst em	t 5
 Interface Swi Ch betv een Sim ple/ Adv anc d vi the drop - dow 	e a o

n

arro w
Sele ct FRF File s: Disp lays the Sele ct FRF dialo gue. This wind ow varie s base d on Proj ect Typ e: Refe r to <u>Proj</u> es for detai ls.
Exp ort Fitte d FRF : The fitted

file

	*.frf (pur ple) is expo rted. Refe r to <u>Exp</u> <u>orte</u> <u>d</u> Files for detai Is.
•	Exp ort Para mer ers: The fitted CM P file *.cm
	p (pur ple) is expo rted. Refe r to <u>Exp</u> orte
•	d Files for detai ls. Add

Add

s the

mod
e to
be
curv
е
fitted
(will
be
curv
e-
fitted
once
Met
hod
1 or
Met
hod
2 is
sele
cted
)
, To
use
this
actio
n.
left
clic
k on
the
left
of
the
mod
e
riah
t
clic
k on
the
right
of
the
mod
e
s, then
click

	"Add "
	from
	the
	top
	u.
	Dala
•	Dele
	Dele
	tes
	the
	sele
	mod
	e to
	be
	curv
	e fitted
	(will
	be
	curv
	e- fitted
	nnce
	Met
	hod
	1 or
	Met
	2 is
	sele
	cted
)
	this
	actio
	n,
	sele
	the
	mod
	e
	from

	the opti miz ed mod es tabl e, then click "Del ete" from the top men u.
•	Dele te All: Clea rs all mod es from the opti mize d mod es table , and rem oves the curv e-fit.
•	Met hod 1: Appl v a

y a curv

	e-fit to add ed mod es by opti mizi ng resid ue (am plitu de).
•	Met hod 2: Appl y a curv e-fit to add ed mod es by non- linea r opti
	miza tion of resid ue (am plitu de), natu ral freq uenc y, or dam

	ping ratio in any com binat ion of each
•	Pre
	dict
	H11 (Flo
	xibl
	е
	Tool
	FRF
	e
	only
): Colo
	ulate
	s the
	pred
	Icted
	uenc
	у
	Res
	pons e
	Fun
	ction
	at the
	tool'
	s tip
	base d.or
	the
	curv
	e-fit
	(gre en).
	,

2.4.2.3.2 Select FRF Files Window

- Bar (1D)
- Plane (2D)
- Flexible Tool FRF

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.2.3.3 Found Modes / Optimized Modes

MODAL ANALYSIS

Advanced Interface - Found Modes / Optimized Modes

The modes tables in the simple and advanced interface are identical.

It is used for displaying found modes detected in the software, and also for displaying modes which have curve-fitting applied to them.

Note Analysis							- # x
Arriget Sar 10 Sar 10 Derit Mentic Salent FHF Export Filled Salenterer Adhanced B Fels Fall Salenterer Bit Marcel Adhanced B Fels Fall Salenterer							
Settings Mode selection	0.000000000						-
Treparticy Response	Optimized Mo	oes		_	1		_
X 21136 V: 1596-008	Made	(Ha)	Dangting Ratio (12)	Sublement (Maren	Mode Shape	Delete
Late down		1 249.51	3.04	2 2213509	903 790		10
		2 676.74	2.60	2 8859509	159.618		10
		3 806.21	5.17	-1 5805809	-110 535		
Provide and a second se	Delete All	Copy Table		-1.30.007	46.00		
albe-add 112,50 225,00 337,50 450,00 542,50 675,00 787,50 500,00	Found Modes						
Frequency [Hz]	Laurence .			Amelitada			
Selected Management 1 🗖 🖓 🤭	120			0.11			
Magnitude Real (Inspirary)	162			0.02			
Barre Cartons	252			0.37			
- Power spectrum	692			0.28			
	Add	ielect all Clear		0.00			
	Mode Selectio Simple / Type: Pow Sensitivity(1014-1004	e Ndvanced Ner Spectrum	Modes: 1	Frequence	y Range(Hz)	100.00 to	1000.00 Ç
10 225 138 455 563 675 788 900	Smoothing	Filter: Medium		Method	2		

Found Modes - Buttons & Boxes:

Frequency	Amplitude	
20	0.33	
62	0.02	
252	0.37	
592	0.28	
780	0.06	

- Frequency: Displays the found modes (frequencies) in the table
- Amplitude: Displays the amplitude of the correspond mode (frequency)
- Add: After selecting a mode (frequency) from the table, click Add to add the mode under Optimized Modes
- Select all: Select all modes from the Found Modes table

• Clear: Clears the selected mode(s)

	Mode No:	Frequency [Hz]	Damping Ratio [%]	Stiffness [N/m]	Mass [kg]	Mode Shape	Delete
1	1	249.51	3.04	2.2213E09	903.790	3	×
Ľ	2	676.74	2.60	2.8859E09	159.618	3	×
	3	806.21	5.17	-3.5805E09	-139.535	۲	×

Optimized Modes - Buttons & Boxes:

- Mode No: Displays the mode number of the corresponding mode (#)
- Frequency: Displays the frequency value of the corresponding mode (Hz)
- Damping Ratio: Displays the damping ratio of the select mode (%) You may double-click the damping ratio value in the table and edit it. This can be done to improve the curve-fit.
- Stiffness: Displays the stiffness value of the select mode (N/m or lbf/in)
- Mass: Displays the mass corresponding to the select mode (kg or lbs)
- Delete: Deletes the selected mode from the table
- Mode Shape: Displays the mode shape (if that mode is excited) of the selected mode in a unitless display:

2.4.2.3.4 Mode Selection Dialogue

automation laboratories MODAL ANALYSIS

Advanced Interface - Mode Selection

The modes selection box can be found in the lower left corner of Modal Analysis. It is used for modifying how mounds are detected in the software.

Buttons & Boxes:

ode Selection Simple Advanced	
Type: Power Spectrum Modes: 5	Frequency Range(Hz): 100.00 to 1000.00
Sensitivity(%): 95.00	$\widehat{\Upsilon}$ $\widehat{\chi}$ R ω_n ζ
Smoothing Filter: Medium	Method Method Residue Natural Damping 1 2

- Simple / Advanced: Switch between the Simple / Advanced interface types
- Type: Power Spectrum of Mode Indicator Function or Mode Indicator Function selection options
- Modes: Displays the number of modes found (which are available for curvefitting)
- Frequency Range(Hz): Displays the frequency range of the FRF file(s) used. It also relates to the horizontal spanners found in Power Spectrum / Mode Indicator chart.

- Sensitivity: Used to modify the automatic mode finder, higher sensitivity finds more modes (main modes), lower sensitivity finds less modes (smaller mode peaks)
- Smoothing Filter: None, Weak, Medium, or Strong - Determines the strength in which smaller modes are ignored/filtered
- Method 1: Apply a curve-fit to added modes by optimizing residue (amplitude). Dark blue shaded boxes represent an enabled button
- Method 2: Apply a curve-fit to added modes by non-linear optimization of residue (amplitude), natural frequency, or damping ratio in any combination of each

2.4.2.3.5 Frequency Response Charts

MODAL ANALYSIS

Advanced Interface - Frequency Response Charts

The Frequency Response Charts are where the user applies curve fitting to the FRF(s):

Buttons & Boxes:

• X/Y Cros shai r curs or: This butto n is used to enab le point sele ction alon g the highl ighte d

(blue
)
FRF,
and
displ
ays
the
X/Y
locat
ion
OT
the
curs
01. <u>II</u>
also
he
used
to
sele
ct
the
mod
es
(yell
OW
trian

- Select Modes: Enables mode selection
- Pan chart: Used to move the chart in X and Y directions
- Zoom X: Used to define a range along the X axis in which only X values are zoomed (Y values are left un-zoomed)
- Zoom Y: Used to define a range along the Y axis in which only Y values are zoomed (X values are left un-zoomed)
- Zoom in X & Y: Define a window in which to zoom in X and Y
- Save Chart: Saves an image file (*.png, *.bmp or *.jpeg) of the Frequency Response chart
- Copy Chart: Copies the Frequency Response chart as an image
- Print Chart: Prints an image of the Frequency Response chart

- X: States the X location of the mouse arrow cursor
- Y: States the Y location of the mouse arrow cursor
- Magnitude: Displays the FRF as a Magnitude vs. Frequency chart
- **Real:** Displays the real portion of the FRF as a Real vs. Frequency chart
- **Imaginary:** Displays the imaginary portion of the FRF as an Imaginary vs. Frequency chart
- Selected Measurement: Changes the displayed chart to the corresponding measurement FRF number
- **Power Spectrum / Mode Indicator:** Displays the power spectrum & mode indicator function of the FRF
- Horizontal Spanner Arrows: Filters the FRF to ignore modes at Left (lower) and Right (higher) frequencies
- Vertical Spanner Arrow: Filters the FRF to ignore lower magnitude modes when dragged upwards

2.4.3 Unit Systems

MODAL ANALYSIS

Unit Systems

Imported FRF data in Modal Analysis (*.frf, *.mtb or *.uff files) can be varying in units, and sometimes you may wish to mix unit systems.

Modal Analysis will <u>automatically detect the FRF type and unit system</u> of the FRF file if it is noted inside the file contents.

If the FRF type and unit system is not contained in the FRF file, the user must select the appropriate type and unit.

When adding an FRF, if the unit system is unknown, the software will prompt this window:

Two unit systems are used:

≻<u>Metric</u>

≻<u>Imperial</u>

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.3.1 Metric

MODAL ANALYSIS

Unit Systems - Metric

The metric unit system consist of basic metric units such as meters (for length), grams (for mass or weight), and liters (for volume).

<u>Modal Analysis</u> will display the unit system for each parameter. Units such as mm, N/ m, and kg are used.

File types:

- The Frequency Response Function (*.frf) file format refers to the file format used to store FRF data.
- The MALTF Document (*.mtb) file format refers to the file format used within MAL Inc.'s Tap Testing Module: MALTF.
- The Universal File Format (*.uff) file format refers to the file format used within various engineering software packages.

Displacement Units:

- >m / N (meters per newton)
- >µm / N (micrometers per newton)

Acceleration Units:

>m / s²/ N (meters per seconds squared per newtons)

>µm / s²/ N (micrometers per seconds squared per newtons)

>g / N (gravitational acceleration per newtons)

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.3.2 Imperial

MODAL ANALYSIS

Unit Systems - Imperial

The imperial unit system consist of basic imperial units such as feet (for length), pounds (for mass or weight), and gallons (for volume). <u>Modal Analysis</u> will display the unit system for each parameter. Units such as in, lbf/ in, and lbs are used.

File types:

- The Frequency Response Function (*.frf) file format refers to the file format used to store FRF data.
- The MALTF Document (*.mtb) file format refers to the file format used within MAL Inc.'s Tap Testing Module: MALTF.
- The Universal File Format (*.uff) file format refers to the file format used within various engineering software packages.

Displacement Units:

>in / lb-f (inches per pound force)

>ft / lb-f (feet per pound force)

Acceleration Units:

>in / s²/ lb-f (inches per seconds squared per pound force)

ft / s²/ lb-f (feet per seconds squared per pound force)

>g / Ib-f (gravitational acceleration per pound force)

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.4 Exported Files

MODAL ANALYSIS

Exported Files

There are two possible exported file types available in Modal Analysis:

Fitted Frequency Response (*.frf)

The fitted frequency response file (*.frf) is to be used with <u>simulation of</u> <u>stability lobes</u> with <u>CutPro</u>.

*.FRF files are file consisting of frequency data as follows:

- Columns 1-3, Row 0 to ?: Contains the data / numerical values
- Column 4: Title of the values in Column 1 (ex. Freq)
- Column 5: Unit of the values in Column 1 (ex. Hz)
- Column 6: Title of the values in Column 2 (ex. Real)
- Column 7: Unit of the values in Column 2 (ex. m/N)
- Column 8: Title of the values in Column 3 (ex. Imag)
- Column 9: Unit of the values in Column 3 (ex. m/N)

Modal Parameters (*.cmp)

The modal parameters file (*.cmp) is to be used with <u>milling cutting</u> <u>simulation</u> with <u>CutPro</u>.

*.CMP files are a <u>text file consisting of frequency data</u> as follows:

- MODES: # of modes (natural frequencies) in the curvefit (1 to ...)
- PNTS: # of points (FRF files) in file (1 to ...)
- REALM: # representing if the fitting is real or imaginary (Always 1 Real)
- WN: The value of the natural frequency / mode (Hz)
- **ZETA:** The damping ratio of the mode (%)
- MASS: The mass of the object corresponding to the mode (kg or lbs)
- STIFK: The stiffness of the object corresponding to the mode (N/m or lbf/in)
- LOCNS: The point locations of the mode shapes where 0 is the tip (0 to ... in mm or in)
- MODSH: The point location relating to the mode shape (ul)
- METRIC / IMPERIAL: States the unit system of the file (METRIC or IMPERIAL)

2.4.4.1 Fitted Frequency Response (*.frf)

manufacturing automation laboratories

MODAL ANALYSIS

Exported Files - Fitted Frequency Response (*.frf)

The fitted FRF file ***.frf** (purple) can be exported by clicking the **"Export Fitted FRF"** button at the top home menu.

For details relating to it's contents, <u>click here</u>.

The exported FRF will be the curve-fitted FRF (displayed in purple)

2.4.4.2 Modal Parameters (*.cmp)

MODAL ANALYSIS

Exported Files - Modal Parameters (*.cmp)

The fitted CMP file ***.cmp** (purple) can be exported by clicking the **"Export Parameters"** button at the top home menu. For details relating to it's contents, <u>click here</u>.

	Home						
Project	Bar 1D					Select all	
Unit	Metric	Select ERE	Evport Eitted	Evport		다. Clear	
Interface	Simple	Files	FRF	Parameters	opuate		
S	Settings Mode selection						

The exported FRF will be the curve-fitted FRF (displayed in purple)

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.5 Support

MODAL ANALYSIS

Support

For Technical, software related inquiries, click on the Support butter under the **File Menu**:

<u>http://www.malinc.com/support/</u>

For general contact:

<u>http://www.malinc.com/contact/</u>

289

Phone	+1 (604) 998-4686
Address	Manufacturing Automation Laboratories, Inc. 2829 Highbury Street Vancouver, BC, Canada V6R 3T7

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.4.5.1 Examples

(D) MODAL ANALYSIS

Examples

The examples folder contains pre-made Modal Analysis Projects which can help you understand how to use the software.

To access this folder, click on the "Examples" button under the File Menu:

List of Available Examples:

- 1D Modal Analysis
- 2D Modal Analysis
- Curve Fitting at the tool
- Curve Fitting at the workpiece
- Flexible Tool Measurement
- Modal Parameter Files
- Receptance Coupling
 - $_{\odot}$ Identification of Tool Tool Holder Interface
 - o Identification of Tool Holder Spindle Interface
 - o Tool Tuning

Copyright © 2015 Manufacturing Automation Laboratories Inc.

2.5 Tap Testing

CutPro: Tap Testing

Congratulations on your purchase of the CutPro: Tap Testing (MALTF) module, which stands for MAL Transfer Function, an Impact modal testing solution from MAL Manufacturing Automation Laboratories, Inc.

<u>MAL Inc</u>. offers inexpensive, easy-to-use tap testing software that is as powerful as the costly and difficult to use packages on the market. Tap testing with an impact hammer is considered to be an art, and the accuracy may be critically dependant on the skill of the user. After years of practical and scientific experience, and collecting feedback from CUTPRO users in the industry, we have designed MALTF with built-in scientific expertise and artificial intelligence. The expert system inspects the quality of the measurement and provides voice-guided instructions to the user.

MALTF Features:

- User friendly graphical user interface.
- Simultaneous testing at multiple measurement points.
- Supports impact force and shakers as exciters and accelerometer, velocity and displacement sensors as vibration output devices.
- Expert measurement quality control system with voice feedback.
- Displays time history, power spectrum, and coherence of the measurements.
- Displays magnitude & phase, real & imaginary parts of the measured FRF's.
- Stores the FRF data in binary or standard ASCII formats.
- Has a built-in engineering report generation system with graphical results.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.1 Information

2.5.1.1 Printing help information

MALTF

Printing help information

If you wish to print just a single section of this on-line help, press the **Print** button on the toolbar (shown below).

If you wish to print more than a few sections, you should open the *PDF* version of the on-line documentation. The *PDF* produces a much nicer printout.

The *PDF* version is located in the CutPro program directory.

Note: You will need Adobe Acrobat Reader to open the PDF file.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.1.2 System requirements

System requirements

Required hardware and software:

- PC: PC with at Pentium 4 1GHz CPU, 1 GB RAM
- Operating System: Windows XP, Vista, or 7.
- Data Acquisition Hardware: MALTF supports National Instrument's DAQ cards that are supported in NI-DAQmx V8.9. The list of supported drivers can be found here.
- Hardlock Key / Network Licence: Will be provided when the software is purchased.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.2 Basic Theory

MALTF

MALTF

Basic Theory

The Frequency Response Function (FRF) or Transfer Function (TF) measurement module has a TF measurement system that is based on impulse hammer tests. Transfer function measurements are taken in Impulse mode with multiple samples taken and averaged to obtain a better representation of the transfer function. The number of samples to be averaged is selected, and the samples are taken one by one.The readings are triggered by impulse hammer input. The results of these tests can be saved in *.mtb or *.frf format, which are compatible with the Modal Analysis module of CUTPRO Advanced Process Simulation Software from MAL Inc.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.2.1 Vibration

manufacturing automation laboratories

MALTF

Vibration

Machine tool vibration plays an important role in the machining operations because excessive vibration results in poor finish, tool wear, and may damage the spindle bearing systems. First, a simple structure with a single degree of freedom (SDOF) can be modeled using a general equation.

$$m\ddot{x} + c\dot{x} + kx = F_a \sin(\omega t) = F(t)$$

where m is the mass, c is the coefficient of damping, and k is the stiffness of the system. When the damping constant is 0, the system oscillates at its natural frequency ω_n . When

damping is present, we need to consider the damping ratio ζ to acquire the damped natural frequency ω_{d} . In addition, resonance angular frequency ω_{r} , which is the maximum value of the damped natural frequency, can be found.

$$\begin{split} \varpi_n &= \sqrt{\frac{k}{m}} & \xi = \frac{c}{2\sqrt{km}} & \omega_d = \omega_n \sqrt{1 - \xi^2} \\ & \omega_r &= \omega_n \sqrt{1 - 2\xi^2} \end{split}$$

All mechanical systems exhibit some damping, and the damping ratio of most metal structures $\zeta < 0.05$ or less. Typically, the effect of damping on the system is ignored when the damping ratio is small and when the system is not excited at resonant frequencies. By assuming x(t) = X sin(ωt +f), we can get the following equation:

$$(-\omega^2 m + j\omega c + k)X(\omega) = F(w) = F_o e^{j\alpha} e^{j\omega^i}$$

The resulting amplitude and phase of harmonic vibrations are:

$$|\Phi(\omega)| = \left|\frac{X}{F_o}\right| = \frac{1}{k} \frac{1}{\sqrt{(1 - r^2)^2 + (2\xi r)^2}}$$

$$\phi = \tan^{-1} \frac{-2\xi r}{1 - r^2}$$

The real and imaginary parts of the transfer function are:

Re:
$$G(\omega) = \frac{1}{k} \frac{1 - r^2}{(1 - r^2)^2 + (2\xi r)^2}$$

Im:
$$H(\omega) = \frac{1}{k} \frac{-2\xi r}{(1-r^2)^2 + (2\xi r)^2}$$

Where n r = ω / ω_n and $\Phi(\omega) = G(\omega) + jH(\omega)$. Typically, $\Phi(\omega)$ is known as the frequency response function (FRF) of the system which is the ratio of the complex amplitude of the displacement to the magnitude F of the forcing function. Also, the real and imaginary (s-plane) of $\Phi(\omega)$ is known as the transfer function (TF).

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.3 Quick Measurement Guide

2.5.3.1 Measurement setup

manufacturing automation laboratories

MALTF

Measurement setup

Following figure shows the proper way to set up the measurement. To get the best results, please make sure the instruments are connected as in the figure, and all cables are in good working order.

Measurement Setup: Hammer is connected to the first and accelerometer cable is connected to the second channel of I/O box.

I/O box is connected to the data acquisition card.

Preparing the hardware:

Following list describes how to setup the hardware for an impact test:

- Connect the signal conditioning box (I/O box) to data acquisition card using the cable provided by National Instruments. If you have a USB data acquisition system, simply connect the I/O box to the computer's USB port.
- If you have a PCMCIA data acquisition system, make sure that first two channels of the I/ O box are set to ICP Power On using the switch just above the BNC connection. If you have a USB I/O box, skip this step.
- Connect the hammer to the first channel (Channel 0, Al0) of the I/O box with the BNC cable.
- Connect the accelerometer (or velocity, displacement, force sensor) to the second channel (Channel 1, Al1) with the appropriate adapter cable and BNC cable. If you have multiple sensors for the measurements, connect them to the following channels.

- Attach the accelerometer to the measurement location (end of the cutter etc.) using wax or magnetic base. You may need to clean the surface in order to attach the accelerometer. It is recommended to use tape or rubber band to hold the cable on the tool older or the stationary part of the spindle housing to avoid cable entanglements and to catch the accelerometer if the adhesive fails. Taping the cable has the added advantage of removing the tension from the cable acting on the sensor, which reduces the accuracy of the measurements. If you are attaching to tip of the tool, the accelerometer is best located between the cavities of the helical flutes, or on the smooth cylindrical surface of the indexed cutter body.
- Run MALTF from CutPro window.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.3.2 Measurement settings


```
MALTF
```

Measurement settings

In measurement settings window, information yellow colored boxes is mandatory, while the information in white colored boxes is optional.

Follow the following steps to define the measurement settings:

- Check the input (hammer) Channel # (2) is correct.
- Input Sensitivity (6) value of the hammer obtained from the manufacturer.
- Check the output (accelerometer, etc.) Channel # (16) is correct.
- Input Sensitivity (19) value of the output sensor. Make sure that the units are correct.
- Set the **Sampling Rate (7)** to a desired value. This value represents the number of data collected in one second.
- Set the **Frequency Range (8)** to a desired value. Make sure that the sampling rate is at least four times the maximum frequency range.
- Set the **Frequency Resolution (9)** to a desired value.
- You can save these values for future reference by clicking on the **Save (14)** button. The values will be saved in *.cfg format. MALTF also remembers the latest measurement settings. Therefore, if you use the same settings over and over, you don't need to set them every time.
- Click OK (11) to close the measurement settings window and MALTF main window will be opened automatically.

1-	Measurement 1 Settings		× 11
	Tale		
	Mechine Tool		Cancel
2	Cutting Feel		Qpen 13
2	Detatie name	Date Priday, December 18, 2009 14:22:57	<u>save</u> 14
4	there thereal # 0 #	Output Channel Name Channel 1 Channel #*	15
5	Source * Force Type * Planmer *	Source * Accelerometer	16
6	Hammermodel	Output Sensor Model Sensitivity (mV/y) >- <mark>9806-55</mark>	
~7		Channel Add	19
		Transfer function type Displacement - Force	20
ð	Sampang Hate (H2) 10000		\sim \sim 21
9	Frequency Range (Hz) 200 - 5000 -		- 22
10	Advanced >>		-23
	* Fields must set before acquiring data		

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.3.3 Measurement procedure

manufacturing automation laboratories

MALTF

Measurement procedure

In MALTF main window, apply the following procedure:

- Set the Number of Measurements (8) to a desired value.
- Press Diagnosis (11) tool to check your measurement setup. Wait several seconds if you
 receive drift error in any channel, and then run the diagnostic tool again. Repeat this
 procedure, until all items in the diagnosis list are green (OK).
- Press the Start (2) button to start your measurements. If you use a PCMCIA data acquisition card, make sure that the ICP power is on. If the system is just powered or cables are just connected, there may be a large offset in the data acquisition system. You need to also make sure that there is a signal in the I/O box. This is automatically checked by MaITF by popping up a Scope (12) window. If you don't see any signal on the Scope (12), there is either a cable connection or driver problem. If the connections are correct,

you may restart the computer so that Windows can automatically detect the driver again. If the signal is present but indicates more than 0.1V voltage, please wait until it drops to about 0.005. This is caused by the capacitors in the I/O box, and they need to settle down to zero. For USB I/O boxes, settling time is only few seconds, whereas for PCMCIA cards, it is around one minute. When the voltage drops to zero, you can click on Continue or close buttons to start the measurements.

- Give an impact on the cutter opposite to the accelerometer. Impact point and direction should be right opposite of the position and direction of the accelerometer, otherwise your measurements will not be accurate. Make sure that the first impact is slightly stronger than the following impacts, since the first impact is used as a reference to check the maximum voltage set. The result is accepted automatically by MaITF. You can reject it by clicking the **Reject (5)** button.
- Continue the measurements by hitting on the cutter with the hammer. Each time data is collected, MaITF will automatically accept the measurement result if the hit is perfect, or reject if it is not good (double hit, multiple hits, or the hit is too hard). You can manually reject it by clicking the **Reject (5)** button, or accept it by clicking the **Accept (6)** button. If the measurement is accepted, the data will be used to calculate transfer function.
- When enough measurements are collected, MALTF will stop collecting data and process your measurements. You can click **(13)** to see your measurement coherence, input and output spectrums, real and imaginary parts or magnitude and phase of your transfer function. There are several important conclusions you can obtain from these graphs:
 - Check your Coherence (CO). In an ideal case your coherence should be 1 at each frequency. However, due to the limitations of your measurement setup, it will be never perfect. If you receive coherence equal to one in most of the frequency range, your measurement is acceptable. If not, click **Reset (4)** button to repeat your test.
 - Check the Power Spectrum using SP button on the tool bar. The power spectrum of the input (top window, the hammer) must not drop to zero where there are natural frequencies, which will be indicated by the peaks in the accelerometer (bottom) window. Otherwise, the measurement will not be able to cover the high frequency region where the hammer signal is close to zero.
- If you want to perform another measurement with the same settings, click Quick New (1) button, and another tab (29) will appear.

MALTF main window.

liction	Limit Low	Limit High	Value	Status
1aITF Version		-	9.2.1.14 Beta	3.0
ound NI-DAQ [USB-9234]				DK.
IIDAQmx version	2	22	8.9	OK.
Physical channel count	23	4	2	0K.
ampling rate		51200	51200	OK.
nput voltage range	-5.000	+5.000	±5.000	DK.
nput voltage level		0.015000	0.000838	OK.
nput drift		0.000198	0.000001	OK
hannel 1 voltage range	-5.000	+5.000	±5.000	OK.
Channel 1 voltage level		0.015000	0.000185	OK,
Channel 1 drift	12	0.000046	0.000002	OK

Diagnosis Screen in MALTF.

Scope window in MALTF.

Input spectrum must not drop to zero whenever you see "peaks" (natural frequencies) in the accelerometer spectrum. Otherwise, the measurement is not accurate. MALTF indicates the poor measurement zone by indicating FRF Real and Imaginary parts with broken lines.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.3.4 Saving & exporting

MALTF

Saving & exporting

Following options are available for saving and exporting the measurements in MALTF:

- Saving as MALTF Binary File (*.mtb): MALTF Binary (*.mtb) files include measurement settings, time, transfer function in time and frequency domain, as well as spectrum and coherence data. Basically, this file type is the default file type to save everything related to a measurement. You can click Save (23) to save your measurement.
- Saving as MALTF Workspace File (*.mtw): If the project consists of different measurements, i.e. Modal Analysis, Feed –Normal direction measurements, you can save the whole project file into one workspace file. If you save as a MALTF workspace file, MALTF will automatically create a folder, save every measurement individually as a *.mtb file, then save the arrangement of the tabs and the state of the program into a *.mtw file. You can click Save Workspace (25) to save your workspace.
- Export (All) FRF file (*.frf): FRF files are text based (ASCII) files that contain 3 columns. First column is the frequency in [Hz], second and third columns are the real and the imaginary parts of the transfer function respectively. The unit of the real and imaginary parts is [m/N], even if the selected unit of MALTF is imperial. FRF files can be used in any CutPro, ShopPro, Modal Analysis or any other third party application. When there are multiple measurements, you can export all tabs to separate FRF files by clicking Export All to FRF in the File menu. The other columns of the file contain the units of the FRF file.
- Export (All) Time file (*.txt): Time files are also text based (ASCII) files that contain 3 columns. First column is the frequency in [s], second and third columns are the input and output of the measurement respectively. The unit of the input is Force [N] and the unit of the output is Acceleration [m/s²]; even if the selected unit of MALTF is imperial. When there are multiple measurements, you can export all tabs to separate time domain files by clicking Export All to Time in the File menu.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.4 MALTF Functions

MaITF functions

In the following pages, MALTF main window and measurement settings are explained in detail.

- Main window
- <u>Settings window</u>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.4.1 Main window

Main window

MALTF

• Quick New (1)

Quick new button opens up another tab using the same measurement settings from the previous tab. Maximum number of tabs that can be opened in one MALTF window is 8. The shortcut for this button is "q".

• Start (2)

This button is used to start the measurement. The shortcut for this button is "s".

• Stop (3)

This button is used to stop the data collection. You can resume by clicking Start button.

• Reset (4)

This button is used to reset the current measurement. It will erase all accepted hits and all calculated data. If you reset, you need to repeat your measurement.

• Reject (5)

This button is used to reject a measurement. When a measurement is rejected, data collected are not used to calculate transfer function, and the system is ready to retake the measurement. The shortcut for this button is "r".

Accept (6)

This button is used to accept a measurement. When a measurement is accepted, measurements taken display increases by one, data collected are used to calculate the transfer function, and the system is ready for next measurement.

• Message Display (7)

This box is used to display messages about states of measurement system, measurement instructions, and hammer hit qualities.

• Measurements Taken Display (8)

This window shows the number of measurements that have been accepted so far.

• Total Measurements Display (9)

This window allows the user to choose the number of measurements to be taken. In MaITF transfer function is calculated based on samples averaged. For an accurate measurement, it is recommended to set this value to at least 5.

• Information Window (10)

This optional window displays device settings, accelerometer, hammer sensitivities, frequency range, sampling frequency, etc. This window can be opened and closed using the button on the left. In this window, peak values of each graph is automatically calculated and listed. Using the inverse of the peak magnitude, dynamic stiffness of the system can be calculated.

• Diagnosis Tool (11)

MALTF runs diagnosis to determine the state of the measurement set up. Typical set-up problems such as loose connectors, broken cables, malfunctioning I/O box or channel, and damaged accelerometer can be diagnosed using this tool.

• Scope Window (12)

This button is used to open a scope window that shows the voltage of a selected channel. With this window, you can check if the data acquisition device works properly, and if the voltage level of each channel being used drops close to zero, which is mandatory for the measurements.

• Display Options (13)

These options are used to choose the graph to be displayed. There are five options are available to choose from: **TI**, **RI**, **MP**, **SP**, and **CO**.

- **TI:** Time domain response. This mode is used for transfer function measurements based on input data from the force hammer. Upper graph shows the input channel (hammer), and lower graph shows the output channel (accelerometer, velocity sensor, displacement sensor, or force sensor).
- **RI:** Real part and imaginary part of the transfer function. In this mode, the upper graph shows the real part and the lower graph shows the imaginary part of the transfer function. The values of this graph can be exported as FRF file.
- **MP:** Magnitude and phase of the transfer function. In this mode, the upper graph shows the magnitude and the lower graph shows the phase of the transfer function.
- SP: Displays the input and output spectrums. The power spectrum of the input (top window, the hammer) must not drop to zero where there are natural frequencies, which will be indicated by the peaks in the accelerometer (bottom) window. Otherwise, the measurement will not be able to cover the high frequency region where the hammer signal is close to zero.
- CO: Displays the cross spectrum and the coherence. In an ideal case your coherence should be 1 at each frequency. However, due to the limitations of your measurement setup, it will be never perfect. If you receive coherence equal to one in most of the frequency range, your measurement is acceptable. If not, click Reset (4) button to repeat your test.

• Measurement Zoom Lock (14)

This button keeps the zoom status of the active tab, when the user selects a different tab. This button is helpful when you want to compare the differences between small portions of different measurements.

Isolate (15)

Isolate button displays only the active tab, removing the graphs of the other tabs from the background.

• Output Channel Selection (16)

This combo box is used to select the output channel, of which data graph will be displayed.

• Lock X (17)

When this button is in pressed state, X axis ranges of the upper and the lower plots will change simultaneously.

• Zoom Extents (18)

This button is used to zoom out both the upper and the lower plots to original ranges. It basically resets the zoom for both graphs.

• Zoom In (19)

There three options will appear if you click the arrow next to the zoom in button: zoom in both X and Y axes, zoom in X, zoom in Y axis.

• Pan (20)

There are three options under this button: pan in both X and Y axes, pan in X axis, pan in Y axis. These options allow the user to scroll the data by clicking and dragging the plot area of a graph.

• Cursor (21)

When this button is in pressed state, the cursor of a graph will move with the mouse, and the coordinates of the cursor will be displayed in the graph's status bar.

• Measurement Settings (22)

This button opens up the measurement settings dialog box. MALTF will not let you change the settings of a saved file or finished measurement, unless you click the reset button.

• Save Measurement (23)

This button saves the file as *.mtb file. MALTF Binary (*.mtb) files include measurement settings, time, transfer function in time and frequency domain, as well as spectrum and coherence data. Basically, this file type is the default file type to save everything related to a measurement.

• Open Measurement (24)

Opens a (*.mtb) file, from a previous measurement and displays the result.

• New Measurement (25)

This button can be used to open a new measurement tab with new measurement settings. When you click this button, settings window will appear and upon the confirmation of the settings window a new tab will open up.

• Save Workspace (26)

If the project consists of different measurements, i.e. Modal Analysis, Feed –Normal direction measurements, you can save the whole project file into one workspace file. If you save as a MALTF workspace file, MALTF will automatically create a folder, save every measurement individually as a *.mtb file, then save the arrangement of the tabs and the state of the program into a *.mtw file.

• Open Workspace (27)

MALTF

This button opens a previously saved workspace file. Since *.mtw file only contains the tab information, make sure that the remaining *.mtb files are also in the same folder.

• Active Tab (28)

This window shows the name of the active measurement tab. The zoom till be reset according to the active tab, unless the **Measurement Zoom Lock (14)** is active.

Click to Add (29)

This button opens a dialog box to ask for a new file or an existing document. If a new measurement is selected, measurement settings window will appear and new tab will be created. Similarly, if open an existing window is selected; selected existing file will be loaded in a new tab.

• Status Bar (30)

Displays the cursor's coordinates.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.5.4.2 Settings window

Settings window

1		Measurement 1 Settings		×		11
		Title		OK A		12
		Machine Tool		Cancel		12
2	_	Cutting Fool		<u>O</u> pen	-	13
2		Bata file name	Date Friday, December 18, 2009 14:22:57	Save	-	14
5		Haput	Output			15
4		Changel #* 0	Channel Name Channel 1 Channel # *			16
5		Source * Force _ Type * Flammer _	Source * Accelerometer			17
6		Sensitivitu (mV/N) * 1000	Sensitivity (mV/a) * 9806.65			1/
			Channel			18
7			Channel 1 Add	Dette		19
			Transfer function type " Displacement - For			20
8		Sampling Rate (Hz)* 100000	Comments			21
Q		Frequency Range (Hz) * 200 - 5000 -				22
2		Frequency Resolution (Hz) * 1				22
10)	<u>A</u> dvanced >>		-		23
		* Fields must set before acquiring data				

Miscellaneous Entries (1)

These boxes are used to enter information about the machine tool, the cutter, and the date of the measurements etc.

• Input Channel Number (2)

This selector is used to select the channel number being used for input sensor (hammer).

• Input Type (3)

This selector is used to choose the input type. The user can choose between hammer and shaker. The hammer is used to actuate the structure with a pulse, while the shaker is used to actuate the structure continuously with random input or sine wave. In the current version, shaker input is disabled.

• Input Source (4)

This selector is used to choose the input source. It is currently set as force.

• Hammer Model (5)

This box is used to choose or enter model name of the input sensor. If both the name and the sensitivity of a model are entered, this model will be saved in model database.

• Hammer Sensitivity (6)

This edit box allows the user to enter the sensitivity of the input sensor. The unit system can be set to metric or imperial by going to Edit - Preferences and opening the Preference dialog box.

• Sampling Rate (7)

This box is used to select sampling rate. MaITF updates the list of sampling rates automatically according to the maximum sampling rate of the data acquisition card, and the number of output channels to be used to collect data.

• Frequency Range (8)

These boxes are used to enter the minimum and maximum frequencies between which MaITF calculates transfer functions.

• Frequency Resolution (9)

This selector is used to choose the frequency resolution, which is the resolution or difference in frequency between each point in transfer function calculations. Frequency resolution equals to the reciprocal of sampling time. In general, lower the frequency resolution is, the longer the duration of the sample, and higher the accuracy of the calculation will be.

• Advanced (10)

This button is used to close the currently opened measurement settings dialog box, and open another one with more parameter settings. For detailed information about advanced measurement settings, please contact MAL Inc.

• OK (11)

Closes the measurement setting dialog box, and the parameters set will be in effect.

• Cancel (12)

Closes the measurement setting dialog box and any changes made will not be used.

• Open (13)

This button opens an existing measurement configuration file *.cfg.

• Save (14)

This button Saves the settings to a measurement configuration file *.cfg.

• Channel Name (15)

This box is used to enter a name for the selected output channel.

• Output Channel Number (16)

This selector is used to choose the channel number being used for the selected output sensor.

• Output Source (17)

This selector is used to choose the output source. The output source can be accelerometer, velocity sensor, displacement sensor, or force sensor.

• Output Model (18)

This box is used to choose or enter model name of the output sensor. If both the name and the sensitivity of a model are entered, this model will be saved in model database.

Output Sensor Sensitivity (19)

This edit box allows the user to enter the sensitivity of the output sensor. The unit system can be set to metric or imperial by going to Edit - Preferences and opening the Preference dialog box.

Add/Delete Output Channel (20)

These buttons are used to add and remove output channels from which data will be collected.

• Output Channel Selected (21)

This box displays the name of the channel that currently is selected, and its channel name, channel number, source, sensitivity are shown on the output parameters frame.

• Transfer Function Type (22)

This is used to select the type of transfer function that the user wishes to display. The user can choose acceleration-force or displacement-force (in which case the system will integrate twice) when the output source is an accelerometer, or they can choose velocity-force or displacement-force (in which case the system will integrate once) when the output source is a velocity sensor. In the case that the output source is a displacement sensor, the system will display the transfer function as displacement-force.

• Comments (23)

This box allows users to enter comments about the measurements for their own use.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6 Data Acquisition

manufacturing automation laboratories

MALDAQ

Introduction

Congratulations on your purchase of MALDAQ, the line of software for impact modal testing solutions from Manufacturing Automation Laboratories.

<u>MAL Inc</u>. offers highly versatile PC-based data acquisition software to measure machining process data such as, force, acceleration, torque, power, and sound pressure which can be used for the diagnosis of machining operations. With CutPro MALDAQ, an entire machining operation can be collected, and the problematic locations on the part can also be tracked. Bottom line, it is an easy to use generic multi-channel data acquisition software with built-in signal analysis features.

MALDAQ Features:

- User friendly graphical user interface.
- Collects up to 8 channels of sensor data simultaneously.
- Logs and streams data to the hard drive.
- Displays real-time data.
- FFT analysis of data windows to identify vibration frequencies and tool run-outs.
- Several digital filtering options.
- Stores data in binary or ASCII text formats.
- Compatible with a variety of data acquisition and operating systems.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.1 Information

2.6.1.1 Printing help information


```
MALDAQ
```

Printing help information

If you wish to print just a single section of this on-line help, press the **Print** button on the toolbar (shown below).

Hide	Locate	< Back	⊂> Forward	Stop	🕼 Refresh	Home	Print	Diptions	
Help bu	ittons.	2012/12/24	Carlos Contrato	10.000					-

If you wish to print more than a few sections, you should open the *PDF* version of the on-line documentation. The *PDF* produces a much nicer printout.

The *PDF* version is located in the CutPro program directory.

Note: You will need Adobe Acrobat Reader to open the PDF file.

MALDAQ

MALDAQ

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.1.2 System requirements

MAL	manufacturing automation
Sale of the second	laboratories

System requirements

Required hardware and software:

- PC: PC with at Pentium 4 1GHz CPU, 1 GB RAM
- Operating System: Windows XP, Vista, or 7.
- Data Acquisition Hardware: MALDAQ supports National Instrument's DAQ cards that are supported in NI-DAQmx V8.9. The list of supported drivers can be found <u>here</u>.
- Hardlock Key / Network Licence: Will be provided when the software is purchased.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.2 Quick Start Guide

MALDAQ Quick Start Quide

Before starting, follow these steps:

- Ensure the DAQ system (card+I/O box or USB) is properly connected to the computer.
- Start the program by MalDAQ from CutPro interface or by double-clicking MalDAQ.exe in CutPro9\Program folder.
- If you have received the following message, check your hardware connections and try again.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.2.1 Continuous data collection

MALDAQ Continuous data collection

Follow these steps to perform continuous data collection:

 Click "MalDAQ" icon in CutPro user interface or open "MalDAQ.exe" from Cutpro9 \Program folder. MalDAQ main window will show up.

MalDAQ User Interface.

- 2. Click "Settings (4)" button to open the settings window.
- 3. Check / Uncheck "On/Off (28)" to enable the channels to be used for collecting data.
- Enter the desired "Sampling Rate (26)". If the desired sampling rate is not possible, MaIDAQ will automatically adjust the sampling rate and display it as "Actual Sampling Rate (27)". This might occur generally for USB DAQ systems (NI 923x or similar).

26 27—	Sampling Rate (Hr	z): 10000 late (Hz):	Nu 10240	mber of Sam	ples: 10240		Window Pe	mod (s): 1	
28 29 30 31 32	On/Off: Input Limits (V): Offsets (V): Gain: [Engineering Unit / Volt) IEPE Power On/Off	Charnel 0 5 ±5 0 1 5 5 7 7 7	Channel 1 25 Y 0 1 T	Channel 2 25 1 1 1 1	Channel 3	Charnel 4	Channel 5	Channel 6	Channel 7 F 1 1 F F

Channels Tab in the Settings Window.

- 5. Set the "Number of Samples (36)" to be displayed in one window period. One window period shows the refreshing time of the MalDAQ user interface. For example, if you set the sampling frequency and the number of samples equal, window period will be one second, which means that the new set of data will be displayed on the screen every second.
- 6. Set the "Input Limits (29)" for each channel. For USB DAQ devices, this option can be selected automatically. Refer to your card's manual for more information.
- 7. Set the "Offsets (30)" for each channel. If your DAQ card is malfunctioning and producing and offset value when it is supposed output 0V, you can use this option to eliminate that offset.
- 8. Set the "Gain (31)" of your sensor. The unit of the gain is sensor specific; however, the denominator is always Volts. For example, for piezoelectric dynamometers, gain is the value set on the charge amplifier's gain value. For accelerometers and hammers this value is the inverse of the sensor's sensitivity.
- If you want to save the data you the hard drive, click on "Log File" tab and select "Continuous Data Logging Mode (47)". If you do not select a path in this step, MaIDAQ will ask you to select it when you click "GO (5)".
- 10. Click "OK" to go back to the main window.
- 11. Select the Channels (20) to view in the user interface for top and bottom graphs.

You can either view the time domain or frequency content of the signal by clicking the "**Frequency/Time (19)**" button.

12. Click "**GO** (**5**)" button to start collecting data; the "**GO** (**5**)" button will be replaced by "**STOP**" button, which will stop acquiring data.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.2.2 Saving & loading

MALDAQ

Saving & loading

Follow these steps to save or load data:

Saving Data

 Click "Save (3)" button to save the displayed data in a *.mdq file. NOTE: if you click "Save" button, MalDAQ will save the data only in the current window. Therefore, if your window period is short, you will save only small amount of data. In order to acquire the whole data, use the "Log File" tab in the settings window and select "Continuous Data Logging Mode (47)".

2. The data in the current window can also be exported as a text file in ASCII format. From top menu, click File -> Export, and save it as a *.mdt file. The first column in the text file represents the time and the other columns represent the active channels (28) in the settings window.

	36 37 Settings
26 27	Channel Filter Display Graph Titles Log File Zoom Defaultz Sampling Rate (Hz): 10000 Number of Samples: 10240 Window Period (s): 1 Actual Sampling Rate (Hz): 10240
28 29 30 31 32	Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 On/Off: IF IF
	Load Configuration Save Configuration Beset OK Cancel

Loading Data

- There are two ways to load data into MalDAQ. The first one is to load data saved as a
 *.mdq file. In order to load a *.mdq file, click "Load (2)" button and select the file to be
 loaded using the file dialog box. As mentioned before, *.mdq files store only one window
 period.
- 2. In the second method, you can load logged data into MalDAQ, click "Load Logged Data (14)" button. Logged data consists of different files in different types. Select the *.cfg data located in that particular folder where your logged data files are. When the data is loaded, it will display only the first window period. In order to display the entire data set, click "Time Span Window (17)" to display data between a specific time range or "Time Span Cursor (18)" to select with mouse. "Time Span Cursor (18)" will display the entire dataset, and set the mouse cursor to X axis zoom. Another way of browsing the logged data is to use the "Pan Log (15) and (16)" buttons. By using these buttons, it is possible to horizontally pan the data to left or right.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.3 Settings Window

Settings Window

This section explains the settings window in MalDAQ. There are six tabs on the Settings window: Channel, Filter, Display, Graph Titles, Log File, and Zoom Defaults. Following pages explain each tab in detail.

Sampling Rate (H	z): 0	Nu	mber of Sam	ples: 0		Window Pe	eriod (s): 0	
Actual Sampling Rate (Hz): 0								
	Channel 0	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel
On/Off:								
Input Limits (V):	± 10 💌	± 10 💌	± 10 💌	±10 🔻	± 10 💌	± 10 💌	±10 🔻	±10 💌
Offsets (V):	0	0	0	0	0	0	0	0
Gain: (Engineering Unit /Volt)	1	1	1	1	1	1	1	1
IEPE Power On/Off	Г	Г	Г	Г	Г	Г	Г	Г

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.3.1 Channel tab

	36 37 Settings
26 27	Sampling Rate (Hz) 10000 Number of Samples: 10240 Window Period (s) 1 Actual Sampling Rate (Hz) 10240
28 29 30 31 32	Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 On/Off: Image: Channel 1 Image: Channel 2 Image: Channel 3 Image: Channel 5 Image: Channel 6 Image: Channel 7 Input Limits (V): 1 5 Image: S Image: S <t< th=""></t<>
7	Load Configuration. Save Configuration. Recet OK Cancel

- Sampling Rate (26): This data specifies the sampling rate in Hz for time-domain data acquisition. The maximum sampling rate is dependent upon the DAQ hardware used. MaIDAQ can automatically recognize wide range of National Instruments PCMCIA cards and USB I/O boxes. Current version of MaIDAQ includes NIDAQmx v8.9; therefore it supports all instruments supported by NIDAQmx. Refer to National Instruments' website and contact MAL Inc. if you are planning to buy a new DAQ hardware. The absolute maximum sampling rate in MaIDAQ is 250,000 Hz; however it is automatically adjusted according to the hardware.
- Actual Sampling Rate (27): Depending on the hardware, MalDAQ automatically recognizes the available sampling rates of the hardware and displays the best available sampling rate in this box.
- **Number of Samples (36):** Number of samples determines how much data will be displayed on the screen before it is refreshed. If the number of samples selected is very low compared to the sampling rate, the screen will be refreshed very quickly.
- Window Period (37): Window Period is an inactive display, which calculated by Number of Samples / Sampling Rate. It shows how much time is required to refresh the screen and display the new set of data.
- **On/Off (28):** This check box allows the user to select which channels to be used for data collection. Check the box to select the corresponding channel.
- Input Limits (V) (29): This option sets the input limits for each channel selected, defining the input range for the channels on the DAQ hardware. These limits should be set as

close to the maximum input as possible. If they are too small, the signal will be cut-off. The more accurate you set this value, less noise you will get. There is a maximum value of +/- 10V for the input limits. This value can be set to lower values than the DAQ hardware's maximum, but it should not be higher. In addition, the actual input signal should not exceed the maximum range for the input voltage. If possible, MalDAQ will automatically recognize and set the maximum input limits of the DAQ device.

- Offset (V) (30): This feature allows the user to enter offsets for particular channels, the
 offset is in Volts. For example, if Channel 0 outputs 0.3V enter 0.3 here to remove the
 offset.
- Gain (Engineering Unit/Volt) (31): This is the scale factor of the measured unit in Unit/ Volt. It depends on the sensitivity of the charge amplifier and/ or sensor used in data acquisition.
- **IEPE Power On/Off (32):** Check this box if your sensor requires external power to run. This checkbox should be enabled for impact hammers, accelerometers and disabled for force sensors.
- Load Configuration (33): This button allows the user to load a System Configuration file previously saved.
- **Save Configuration (34):** this button allows the user to save the current settings into a System Configuration (*.cfg) file for later use.
- **Reset (35):** this button resets the settings to default and deselects all channels. All settings that have been changed will be lost.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.3.2 Filter tab

MALDAQ

Filter tab

There are three columns in the Filter tab: Filter Type, High Frequency Cut Off, and Low Frequency Cut Off. Each Setting can be set individually for each channel.

CutPro Modules

Channel	Filter	Display Gra	ph Titles Log File 2	Zoom Defaults	
Γ		<u> </u>			Ĩ
		Filter Type	High Frequency Cut Off	Low Frequency Cut Off	
	Channel 0	NONE	1000	100	
	Channel 1	NONE FIB HIGH	1000	100	
	Channel 2	FIR BANDPASS	1000	100	
	Channel 3	FIR LOW	1000	100	
	Channel 4	IIR BANDPASS	1000	100	
	Channel 5	IIR BANDSTOP	1000	100	
	Channel 6	NONE	1000	100	
	Channel 7	NONE	1000	100	

Filter Type (38): There are eight filter types:

FIR HIGH	IIR HIGH
FIR BANDPASS	IIR BANDPASS
FIR BANDSTOP	IIR BANDSTOP
FIR LOW	IIR LOW

FIR stands for Finite Impulse Response and **IIR** stands for Infinite Impulse Response. The **FIR** Filter is designed in terms of the finite impulse response by using Equiripple

Filters. This kind of filter has an important property of *linear-phase*; which means the phaselag of the filter is linear versus frequencies. However, the amplitude response is

not very accurate. Select **FIR** Filters only when linear-phase property is required. The **IIR Filter** is designed in terms of the infinite impulse response by using 5th order

Butterworth Filter. It is recommended for regular noise filtering, since it has a very good amplitude response.

High-pass filters can be used to filter out the low frequency signals; low-pass filters can be used to filter out the higher frequencies.

Band-pass filters filter out signals of other frequencies other than the selected frequency

range; band-stop filters filter out signals from the selected frequency range.

• High Frequency Cut Off (39): It is the high cut-off frequency for only the band-pass

and **band-stop** filters. It serves no purpose for the **low-pass** and **high-pass** filters.

 Low Frequency Cut Off (40): It is the low cut-off frequency for the band-pass and band-stop filters as well as the cut-off frequency for low-pass and high-pass frequency.

All Frequencies and coefficient generation are guaranteed to be within 5% of theoretical values. The Minimum frequency for filtering is 200 Hz, as lower values do not allow the mathematics to generate effective coefficients with reasonable roll-off.

NOTE: when using filtering, the calculations can take a lot of time, which may impede on realtime acquisition time constraints. Therefore it may be suggested that if continuous acquisition without data being dropped is of importance, the user should either increase the number of samples to allow more time for calculations, or not use the digital filtering. When data is dropped, transients will show up. Transient behavior will always be seen on the first collected data.

(transients are filtering responses to new data.)

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.)

2.6.3.3 Display tab

MALDAQ

Display tab

Three display options are available for each display panel in MalDAQ: **"Show Caption**", **"Show Grid**", and **"Show Axis Titles**".

-		Display 1	Display 2	
-	Show Caption	Г		
<u> </u>	Show Grid	ব	ঘ	
	Show Axis Titles	ব	ম	

- Show Caption (41): This option, when enabled, shows the title of the corresponding graph (Upper and lower graphs in the main window). The text of each graph can be set in the next tab.
- Show Grid (42): This option, when enabled, shows the grid on the corresponding graph.
- Show Axis Titles (43): This option, when enabled, shows the Y-axis label for each graph window (Can be set in the next tab).

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

MALDAQ

Graph titles tab

Channel Filter	Display Graph Titles Log File	Zoom Defaults	
1	Title	Units	
Channel 0	FX	N	
Channel 1	FY	N	
Channel 2	FZ	<u>N</u>	
Channel 3			
Channel 4			
Channel 5	[
Channel 6			
Channel 7			

This tab allows the user to label each channel used (44) as well as defining its unit (45). "Units" column sets th Y-axis labels for each channel. In the figure above, sample titles and their units are entered. The titles and units can be displayed on the graph if appropriate options are selected (see Display Tab).

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.3.5 Log file tab

Log file tab

This tab allows the user to select if the measurement will be logged to the hard drive or only displayed on the screen as a scope.

MALDAQ

	Channel	Filter Display	Graph Titles	Log File	Zoom Defaults	
6		C Scope Mode	G Scroll Data	at Window P	eriod	
			C Scroll Data Per Windo	i Ten Times w Period		
7		 Continous Data Logging 	Mode			
4		Path Name for Logging Data	x C:\CutPro9\E	xamples\MalD	AQ\Continuou	

- Scope Mode (46): If the "Scope Mode" radio button is selected, the measurements will not be logged on the hard drive. It will be displayed on the screen and refreshed either every window period or on tenth of the window period. For example, when the window period is selected as 50 seconds, MaIDAQ will update the graphs either every 50 seconds or 5 seconds. However, the window period always will be 50 seconds. The effect of scrolling will scroll data across the screen in segments simulating an oscilloscope.
- Continuous Data Logging Mode (47): If the user selects this option, MalDAQ will save the entire measurement and the measurement settings to the hard drive. User can select the path in this tab, or leave it blank. If it is left blank, MalDAQ will ask user a path file, just after the "GO" button is pressed in the main window. MalDAQ will create a folder and save everything in that folder. The data will be saved in the specified *.log file, with a number at the end. For example, if "Test" is selected as the log path name, MalDAQ will create a folder named "Test" in the specified path and will save the data starting from "Test1.log". After the first log file reaches 100MB, MalDAQ will automatically start writing to a second file, "Test2.log".

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.3.6 Zoom defaults tab

MALDAQ

Zoom defaults tab

Axis	Use Default	Maximum	Minimum	
Time	. م ا	1000	0	
Data	ų	10	0	
 - Frequency	5	1000	0	
Magnitude	9	1000	0	

This tab enables user to edit the zoom defaults of the display. By enabling the "**Use Default**" checkbox, the corresponding axis will be automatically scaled to fit the data collected. If the "**Use Default**" checkbox is disabled, the maximum and the minimum of the corresponding axis can be entered manually. This range will be applied to both displays. User can select between time ranges (**48**), data ranges (**49**), frequency ranges (**50**), and FFT magnitude ranges (**51**).

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.4 Main Window

manufacturing automation laboratories

MALDAQ

MALDAQ Main Window

This section the manual explains the commands both in the interface and the file menu.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

2.6.4.1 Interface

manufacturing

MALDAQ

- New (1): Use this button to create a new document in MalDAQ. This replaces any previously opened measurements. MalDAQ asks to save changes to the current document before creating a new document. If the user creates a new document without saving, all changes made will be lost since the last time it has been saved. Before replacing an untitled document, MalDAQ displays the "Save As" file dialog box and asks user to name and save the document.
- **Open (2):** Use this button to open a new document in MalDAQ. This replaces any previously opened measurements. MalDAQ asks to save changes to the current document before opening a new document. If the user opens a new document without saving, all changes made will be lost since the last time it has been saved. Before replacing an untitled document, MalDAQ displays the "**Save As**" file dialog box and asks user to name and save the document.
- Save (3): Use this button to save the active document under its current name and directory. When you save a new document for the first time, MalDAQ will display the "Save As" file dialog so the user can name the document. If you want to save the document with a different name or path, use "Save As" from the file menu.
- Settings (4): This button opens up the "Settings" window. Please see the detailed help for this window.
- **Go/Stop (5):** MalDAQ starts collecting data when this button is pressed. It is replaced by "**STOP**" button when collecting data.
- **Cursor (6):** Normally, the user in standard operate mode, indicated by the crosshair. In standard operate mode, you can click on the graph to move cursor around. The graph control will update the "**Cursor Locations (24)**" just below the graph. By default, the cursors are locked to data points.
- **Pan (7):** if the user presses the pan tool, it will switch out of the standard operate and the user can scroll the data in the current window by clicking and dragging the plot area of the graph. The "**Pan**" toolbar allows the user to pan the graphs in X direction, Y direction, and
both X and Y directions. These options are available beside the button on the pull down menu for the toolbar command.

Zoom In (8): This button allows the user to zoom in or out on the graph. If the arrowhead on the right hand edge of the button is pressed a pop-up menu will be shown. "Zoom In" zooms by rectangle, "Zoom X" keeps the Y axis unchanged, and "Zoom Y" keeps the X axis unchanged.

- **Zoom Extents (9):** This button will reset the zoom in both graphs and display the whole data in the current window.
- Lock X (10): Use this command to lock the X axes of both graphs in the current view together. Next time either graph is zoomed or panned, the other graph's X axis will be rescaled such that it has the same extents as the zoomed view.
- **FFT Window (11):** This command allows the user to perform a Fourier Transform on a selected region of the graph. To use this command, simply click it and select a region on the graph using the mouse. A new FFT window will open, displaying the Fourier Transform of the selected time range. It is disabled during data acquisition.

Several functions are available on the FFT Window. The user can pan or zoom in X, Y, or both X and Y directions by clicking the appropriate button. The graph can also be reset to the default scale by pressing *Zoom Out*. The *Copy* button copies the FFT graph onto the clipboard. Clicking *OK* buttons closes the FFT window and returns to the main window. You can see the harmonics of the peaks by selecting the "**Show Harmonics**" button and selecting a peak. You can also save and export the FFT graph or detect the chatter frequency by clicking the "**Find Chatter**" button. At the bottom, you can see the position of the cursor, and the difference between two consecutive clicks on the graph. A0 is the average value of the FFT, which corresponds to the average of the selected sample.

- **Kalman Filter (12):** This button displays the Kalman Filter wizard. Detailed help can be found in the following sections of this manual.
- **Revert (13):** This button deletes the Kalman filtered data and reverts to the original data.
- Load Logged Data (14): This command allows user to load a previously saved logged data by opening a *.cfg file which contains the path and the filename of the logged data. This command opens a file dialog. To unload the data, simply click this button again.
- Pan Log Left (15) and Pan Log Right (16): This command allows the user to pan the logged data to the left and to the right on the x-axis. To pan to the right, click the button with the right arrow; then select a region of the graph with the same width as the desired size of pan. For example, if you wish to pan to the right by 3 grids, simple select 3 grids on the graph. The panning applies to both upper and lower graphs. Note that this button is enabled only after a logged data is loaded.
- **Time Span Window (17):** This command opens a new window which allows the user to enter the start time and the end time in seconds to display the data. The window also displays the sampling frequency and the total duration length of the log. Note that this button is enabled only after a logged data is loaded.
- **Time Span Cursor (18):** This button serves the same purpose as the "**Time Span Window**", except MalDAQ will displayed the entire logged data an you can zoom the desired portion of the logged data by drawing a rectangle around it.

- **Frequency/Time (19):** This button switches the graph between Frequency and Time Domain. Press "**Frequency**" if you wish to view the graph in frequency domain; press "**Time**" if you wish to view the graph in time domain. **Note:** When collecting data in realtime, FFT is only performed if this button is pressed to "Time" (meaning presently in frequency domain). FFT is a computationally intensive action meaning it may impede on real-time constraints. Therefore it may be suggested that if continuous acquisition without data being dropped is of importance, the user should either increase the number of samples to allow more time for calculations, or not use FFT. (Especially in scrolling when often there are large data numbers).
- **Channels (20):** This box determines which channel to display on the corresponding graph.
- Log Status (21): This display shows if the current measurement will be logged to the hard drive. It will display "Logging" when the user selects "Continuous Data Logging Mode" in settings window, and "Not Logging" otherwise.
- **Sampling Window (22):** This label displays the current sampling window time which is set in the settings window.
- **Sampling Rate (23):** This label displays the current sampling rate which is set in the settings window.
- **Cursor Locations (24):** These labels show the X axis and Y axis values of the cursor which is shown with a red crosshair for both graphs.
- Y axis Labels (25): These labels will display the units of the graphs if they are entered in settings window.
- **Graph Titles (26):** These labels will display the titles of the graphs if they are entered in settings window.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

File Formats

3 File Formats

File Formats - Connectivity Graph

The follow graph represents how files are linked between modules in CutPro:

NOTES

- SpindlePro can not be used in imperial units
- ShopPro FRF outputs files in µm/N or inch/lbf, all other modules/softwares are in m/N or inch/lbf.

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

Training / Videos

4 Training / Videos

Training / Videos

The latest videos in high definition quality are available on our website for free under the training tab.

Training Page: http://www.malinc.com/training/

CutPro Start-to-Finish Guide: <u>http://www.malinc.com/wp-content/uploads/2014/05/</u> CutPro_Guide.pdf

CutPro Video Guide: http://www.malinc.com/training/cutpro-video-manual/

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

CUTPRO

Support / Helpdesk

5 Support / Helpdesk

Support

At Manufacturing Automation Laboratories, Inc. we provide prompt technical <u>support with 24 hours.</u>

Please note that MAL staff do not work on Canadian holidays or weekends.

For Technical, software related inquiries, click on the Support butter under the **File Menu**:

Contacting Manufacturing Automation Laboratories Inc.

Manufacturing Automation Laboratories, Inc. 2829 Highbury Street Vancouver, BC, Canada V6R 3T7

- Tel: (604) 998-4686
 eFax: (604) 608-3265
 Critical Emergency (Immediate Assistance Required) : (604)
 998-4686 Extension 003 (Hasan Altintas)
- @ Sales: <u>sales@malinc.com</u> Technical Support: <u>support@malinc.com</u> Web: <u>http://www.malinc.com/</u>

Copyright © 1996-2016 MAL Manufacturing Automation Laboratories, Inc. (Updated for CutPro Version 11.1.1.1)

Indexable Cutter 81, 175

- A -

Analytical Stability Lobes 69, 167

- B -

Ball-end Endmill81, 175Buttons22, 25, 301, 313

- C -

Chip Thickness 129, 187 CutPro 10 Cutter Geometry 80, 174 Cutter Properties 81, 175 Cutting Coefficient Identification 69, 167 Cutting Condition 122, 186 Cutting Force 129, 187 Cylindrical Endmill 81, 175

- D -

Down-milling 122, 186

- E -

Endmill 81, 175 Example Files 92, 147, 195 Experimental Average Cutting Forces 129, 187

- F -

Face-milling 122, 186 FFT (Fast Fourier Transform) 129, 187 File 22, 25, 301, 313 File Formats 330

- G -

General Endmill 81, 175

- | -

Imperial 36, 154, 202

- L -

License Information 11 Load 22, 25, 301, 313

- M -

Machine & Tool 80, 174 MalDAQ 308 MalDAQ Settings 315 MaITF 291 MaITF Settings 306 Measurement 294 Metric 35, 152, 201 Milling 30 Milling Process Simulation 69, 167 Modal Analysis 232 Modules 22

- 0 -

Open 22, 25, 301, 313 Optimize Variable Pitch 69, 167

- P -

Plots 129, 187 Printing 291, 309

- R -

Resultant Force 129, 187 Results 129, 187

- S -

Save 22, 25, 301, 313 Simulation 15, 69, 167 Simulation Modes 69, 167 Slotting 122, 186 Spindle Bending Moment 129, 187 Spindle Power 129, 187 Spindle Torque 129, 187 Stability Lobes [Results] 129, 187

Index

 Stability Lobes In Time Domain
 69, 167

 Start
 22, 25, 301, 313

 Structural Flexibility
 80, 120, 174, 184

 Support
 334

 System Requirements
 13, 292, 310

- T -

Tangential Force 129, 187

- U -

Units 35, 36, 152, 154, 201, 202 Up-milling 122, 186

- V -

Variable Pitch 77, 85, 129, 187 Vibrations 129, 187, 293

- W -

Workpiece 24, 120, 135, 184 Workpiece Material Manager 24 Workspace 31, 148