

#### MAL MANUFACTURING AUTOMATION

LABORATORIES INC.

2829 Highbury St., Vancouver, B.C.

CANADA V6R 3T7,

http://www.malinc.com/

Tel.: (604) 228 9213, Fax: (604) 228 9269

# **Virtual CNC Help File**





#### Contents

| 0.1 Introduction                                             |
|--------------------------------------------------------------|
| 0.2 Installing and Running Virtual CNC4                      |
| 0.3 Example Files5                                           |
| 1.0 User Manual7                                             |
| 1.1 Overview of Virtual CNC7                                 |
| 1.2 Axis Configuration8                                      |
| 1.3 Reference Toolpath File Configuration11                  |
| 1.4 Trajectory Generation Configuration12                    |
| 1.4.1 Kinematic Profile Configuration14                      |
| 1.4.2 Input Shaping19                                        |
| 1.4.3 Interpolation Configuration20                          |
| 1.4.4 HSM (Smoothing) Configuration22                        |
| 1.5 Axis Servo Control Configuration23                       |
| 1.5.1 Feed Drive Configuration24                             |
| 1.5.1.1 Leadscrew Servo Drive Configuration26                |
| 1.5.1.2 Leadscrew Servo Drive (Rigid-Body Dynamics)27        |
| 1.5.2 Flexible ball screw Configuration32                    |
| 1.5.2.1 Modeling a Ballscrew Drive34                         |
| 1.5.2.2 Analysis of a Ballscrew Drive36                      |
| 1.5.2.3 Loading the Transfer Function of a Ballscrew Drive   |
| 1.5.4 Rotary Servo Drive Configuration46                     |
| 1.5.6 Controller Configuration51                             |
| 1.5.6 Disturbance Configuration54                            |
| 1.5.7 Feedback Measurement Configuration56                   |
| 1.6 Simulation Configuration57                               |
| 1.6.1 Virtual CNC Real Time Implementation Quick Start Guide |
| 1.6.3 Advanced Analysis Toolbox67                            |
| 1.7 Export Results72                                         |
| 1.8 Support                                                  |



## **0.1 Introduction**



Virtual CNC is a comprehensive virtual simulation software package, developed for predicting the performance of a realistic and modular CNC system in a computer simulation environment.

It can be used as a learning tool, as well as an optimization tool for a real CNC system. Furthermore, Virtual CNC assists users in the axis feed drive and controller design.

Virtual CNC has the following features:

• Definition of new 3-Axis and 5-Axis machine.

 $\cdot$  Creating tool path or loading a saved tool path file (CL file or APT file.)

 $\cdot$  Configuring the trajectory generation including the kinematic profile, interpolation type and smoothing type.

• Flexible ball screw feed drive design and analysis.

 $\cdot$  Allow to try out various feed drive design alternatives, control laws and sensors with different resolutions.

 $\cdot$  Advanced analysis of frequency analysis, axis tracking error and contour error.

 $\cdot$  Allow to export the simulation results including the axis tracking error and contour error.



#### **0.2 Installing and Running Virtual CNC**

Run the Virtual CNC installer by double-clicking the VirtualCNCIntallation.exe, and then double-click VCNC.exe to run Virtual CNC.

#### **Loading and Creating Project Files**

From the File menu, you can load any of the <u>example files</u> found in the examples folder VCNC/Virtual CNC Examples, or can create a new project.





#### **0.3 Example Files**

The following example files are provided with Virtual CNC. They can be found in the **Virtual CNC Examples** Directory under your main **VCNC** directory.

To open an example file, select **File > Open** in the main Virtual CNC window. The examples are included within the VCNC/Virtual CNC Examples folder and are divided into four subfolders:

**Ex01\_Kinematic Configurations:** Two examples for kinematic configurations.

The example project **Ex01A\_3 Axis Rigid Drive Example.vcnc** is configured X axis, Y axis and Z axis feed drive as the lead screw rigid drive.

The example project **Ex01B\_5** Axis Rigid Drive Example.vcnc is configured the X axis, Y axis and Z axis feed drive as the lead screw rigid drive, and configured B axis and C axis feed drive as the rotary drive.

**Ex02\_Flexible Ball Screw Drive Systems:** An example for flexible ball screw drive systems.

The example project **Ex02\_Flexible Ball Screw Drive Systems.vcnc** is configured X axis, Y axis feed drive as the flexible ball screw and Z axis feed drive as the lead screw rigid drive. The result shows that the flexible ball screw feed drives have vibrations.

**Ex03\_Active Damping of Drives:** Two examples for active damping of drives.

These projects are based on the example project **Ex02\_Flexible Ball Screw Drive Systems.vcnc** and implement two methods to actively



dampen vibrations occurring in flexible ball screw feed drives: input shaping and accelerometric feedback.

The example project **Ex03A\_Input Shaping .vcnc** applies input shaping within the trajectory generation module.

The example project**Ex03B\_Accelerometric Feedback.vcnc** uses active damping within the P-PI controller.

**Ex04\_Trajectory Generation with Splines:** Two examples for configuring the trajectory generation with splines.

These example projects are namedEx04A\_3Axis\_Trajectory Generation with Splines\_Optimized Feedrate.vcnc, and Ex04B\_5Axis\_Trajectory Generation with Splines\_Optimized Feedrate.vcnc, and optimize the feed rate profile when generating the trajectory path, for 3-axis and 5-axis configurations respectively.



### **1.0 User Manual**

#### **<u>1.1 Overview of Virtual CNC</u>**

Virtual CNC could predict the performance of a realistic and modular CNC system in a computer simulation environment. But before the simulation you should configure the trajectory generation, axis feed drive, controller and so on.

Virtual CNC has five modules to simulate: Axis Configuration, Toolpath File, Trajectory Generation, Axis Servo Control, and Simulation.



**Axis Configuration**: In Axis Configuration Module, you can build and configure a 3-Axis or 5-Axis machine structure and check the feasibility.

**Toolpath File**: In Toolpath File Module, you should create or load a toolpath file as the reference toolpath file.

**Trajectory Generation**: In Trajectory Generation Module, you should select the trajectory requirements, which include constant, trapezoidal, cubic acceleration and optimized feedrate profiles. The interpolation type also has two options: point to point and continuous interpolation.

**Axis Servo Control**: In Axis Servo Control Module, you can configure the feed drive, controller, feedback and disturbance based on your own axis servo drive and control law.

**Simulation**: You'll get the simulated results including actual toolpath, tracking error and contouring error by running simulation. In the advanced analysis toolbox, you also can analyze the frequency response, axis tracking and contouring.



## **1.2 Axis Configuration**

The Axis Configuration module has two options: 3 Axis Machining and 5 Axis Machining.

Nothing needs to be configured for 3 axis machine.

In the 5-Axis Machine Configuration Module, you'll configure and build the kinematical structure of a machine tool for your CNC system and check if the machine structure configuration is feasible.



To configure a 5 axis machine, select the 5 Axis Machining radial button first, and then click the Configure button to open the 5 Axis kinematics Module configuration interface.



| 5 Axis Kinematics Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Structural Type Spindle Rotating (SR) Rotary Table (RT) Hybrid (HT) Kinematic Chain for SR Machine Machine Coordinate System (MCS) (0,0,0) Cartesian Drives Offset of Cartesian drives w.r.t. MCS X 0 Y 0 Z 0 Work Piece Rotation of axis with respect to LCS_T2 1st Rotation [deal 2nd Rotation [deal]                                                                                                                                                                                                                                                         | Build     Rotate       Show Coordinate     Zoom       Hide Coordinate     Pan |
| Ist Rotation (deg)       2nd Rotation (deg)         Axis & Angle       X         Offset w.r.t. linear drive       X       Y       0       Z         R (primary)       Axis       Rotate Coordinate System         Rotation of axis with respect to LCS_T3       1st Rotation (deg)       Axis & Angle       X       Y       Update         Offset       X       0       Y       0       Z       0         Offset       X       0       Y       0       Z       0         R (secondary)       Axis       Data Coordinate Continue       Data Coordinate Continue |                                                                               |
| Rotation of axis with respect to the LCS of primary axis         1st Rotation [deg]         Axis & Angle         Y         Offset         X         Y         Z         Offset         X         Y         Z         Col         Rotation of axis with respect to LCS of secondary axis         1st Rotation         2nd Rotation         Axis & Angle         Y       X         Y       Y         Update         Offset w.rt. MCS       X         Y       Z                                                                                                    |                                                                               |

The 5 Axis machine must be configured with the following five steps.

#### **Step 1: Selecting the Structural Type**

There are three options for the structure type: Spindle Rotating (SR), Rotary Table (RT) and Hybrid (HT).

- With the Spindle Rotating (SR) structure, both rotary axes are built on to the spindle part so the orientation motion is driven by the spindle;
- With the Rotary Table (RT) structure, both rotary axes are built on to the linear XY table and the workpiece is fixed on top of the rotary table. The orientation movement is driven by the workpiece;
- As a hybrid form of the above structures, Hybrid (HT) is designed as one rotary axis built on the spindle and the other on the XY table.



### Step2: Configuring the Kinematic Chain

Then you should specify the Kinematic Chain based on the machine structure type selected on the step 1. The Kinematic chain relates 6 coordinate systems. The Machine Coordinate System contains 5 subsystems: Cartesian Drives, Work Piece, Primary, Secondary and Tool. Particularly, the Primary and Secondary systems should be set with a rotary axis from X, Y and Z.

After the rotary axes are specified, the offset and rotation of each subsystem can be set. The constant offset values for X, Y, Z should be set based on its reference system. Similarly, if there is a constant rotation between the current system and its reference system, then the Rotate Coordinate System check box should be chosen. The 1st and 2nd rotation axis and its angle value can then be configured separately.

#### **Step3: Building the 5 Axis Machine**

The configuration results can be displayed by clicking Build in and the machine with rotary axes will be presented.

The coordinate of each system can be turned on or off by clicking the Show Coordinate button and the Hide Coordinate button. The Rotate, Zoom and Pan buttons will help you view the virtual machine structure better.

#### **Step4: Checking the Configuration Feasibility**

It is necessary to check the configuration feasibility before proceeding by clicking the Configuration Feasibility Check button.

#### **Step5: Save and quit**

If the configuration is feasible after step 1-4, you should click the OK button to save the configuration and click the close button to quit.



#### **<u>1.3 Reference Toolpath File Configuration</u>**

Virtual CNC accepts reference toolpath generated on CAD/CAM system in the form of industry standard Cutter-Location(CL) format. Each block in the CL file contains NC block numbers, tool paths in the form of linear, circular and spline segments, the cutter dimensions, tool center coordinates and feed speed for machining a particular part on a CNC machine tool.

In the Toolpath Files module interface, options of reference toolpath type can be selected: Command Line File or CL/APT file.

| Virtual CNC           |                                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| File Help             | د                                                                                                                                       |
| Axis<br>Configuration | Toolpath Files                                                                                                                          |
| Please :              | select a type of toolpath file:<br>- Command Line Files<br>Define toolpath by Command Lines<br>Create toolpath file using command lines |
| 0                     | CL/APT Files Please select the type CL/APT file generated by CAD/CAM processing systems:     APT CL Files (*.aptsource)                 |
| Select                | a toolpath file<br>Browse<br>Preview Toolpath Preview File                                                                              |
|                       | © Manufacturing Automation Laboratory, UBC                                                                                              |



If you select CL/APT file you should select a CL/APT file which has been generated from on CAD/CAM system.

If you select Command Line File, two options are given to define a toolpath:

- Click the button Create toolpath file using command lines to open the Command Line Window to define a toolpath.
- Click the button Browse to select a toolpath file. Some simple toolpath files are also provided in the Examples/CommandFileExample folder.

After selecting or defining a reference toolpath, click the button Preview Toolpath to check the toolpath and the button Preview File to check the file.

## **1.4 Trajectory Generation Configuration**

In trajectory generation section, the tool path is interpolated into tiny segments according to different interpolation strategies. The data of each segment contain the position command for each axis, which decide the trajectory that cutter moves along. Different strategies can generate different feed profiles (tangential velocity profiles), as well as different command data for each axis, which may affect the dynamic performance and the work piece contour error.

In the trajectory generation module, you should configure four parts in the interface:

#### **Kinematic Profile**

Kinematic Profile section is designed for various feed profile options. The four feed profiles have different smooth orders. Trapezoidal



Velocity is the simplest with much more jerk, Cubic Acceleration will give smoothest feed profile, and Optimized Feedrate uses the optimized feed rate algorithm with a continuous jerk profile.

## **Input Shaping**

Input Shaping is a filtering technique to block those harmonics of the command which coincide with the structural modes of the axis drives. Frequency and damping of the structural mode is required in order to set a shaper which avoids excitation of that mode. There are currently three types of input shapers available in VCNC.

#### **Interpolation Type**

Interpolation Type affords options between Point to Point Interpolation and Continuous Interpolation. The tool path is treated as normal linear code (G01) in Point to Point Interpolation mode, and the feed will decrease to zero at the end of each line. In Continuous Interpolation mode, the linear tool paths will be connected with smooth corners if necessary, so the feed profile will be more efficient.

#### HSM (Smoothing)

In High Speed Machining, the joint limits are better to be concerned. When HSM is chosen, the constraints for each axis will be taken into consideration in trajectory generation.





## **<u>1.4.1 Kinematic Profile Configuration</u>**

The configuration of "Kinematic Profile" includes four options: trapezoidal velocity, trapezoidal acceleration, cubic acceleration and optimized feedrate. The four feed profiles have different smooth orders. Trapezoidal Velocity is the simplest with much more jerk, while Cubic Acceleration will give smoothest feed profile.

You can choose one type by selecting the radial button and clicking the "Settings" button.

Then each interface of the three types will be open in the right part of the window.



The velocity limit, acceleration limit and jerk limit should be set properly.



#### **Trapezoidal Velocity**



## **Trapezoidal Acceleration**





#### **Cubic Acceleration**





## **Optimized Feedrate**





#### **1.4.2 Input Shaping**

Input Shaping is a filtering technique to block those harmonics of the command which coincide with the structural modes of the axis drives. Frequency and damping of the structural mode is required in order to set a shaper which avoids excitation of that mode.

There are currently three types of input shapers available in Virtual CNC: ZV (Zero Vibration), ZVD (Zero Vibration and derivative), and EI (Extra-Insensitive).

The ZV shaper brings a half vibration period delay. The ZVD shaper causes a delay equal to a full vibration period, and consequently, larger trajectory distortion effect.

However, ZVD shaper is significantly more robust than ZV shaper, which makes it preferable for the cases where the actual frequency may deviate from the modeled one by more than 5%.

EI shaper also causes one full vibration period and is slightly more robust than ZVD.



Copyright © 2015 Manufacturing Automation Laboratories Inc.



## **<u>1.4.3 Interpolation Configuration</u>**

Interpolation Type affords options between "Point to Point Interpolation" and "Continuous Interpolation".

The tool path is treated as normal linear code (G01) in "Point to Point Interpolation" mode, and the feed will decrease to zero at the end of each line.

In "Continuous Interpolation" mode, the linear tool paths will be connected with smooth corners if necessary, so the feed profile will be more efficient.



## **Point to Point Interpolation**



## **Continuous Interpolation**





## **<u>1.4.4 HSM (Smoothing) Configuration</u>**

The HSM (Smoothing) has two options: Joint Limits and Spline Compressor.

If you check the Joint Limits, you should click set icon to configure the parameters in the Trajectory Limits interface.

| Virtual CNC                          |                    |                          |                                 |                                 |                                       |
|--------------------------------------|--------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------------|
| ile Help                             |                    |                          |                                 |                                 |                                       |
|                                      |                    |                          |                                 |                                 |                                       |
|                                      |                    | 1                        |                                 |                                 |                                       |
| Axis                                 | ath Files 📕        | Trajectory               | Axis Ser                        | vo Control 🗕                    | SIMULATION                            |
| Configuration                        |                    | Generation               |                                 |                                 |                                       |
|                                      |                    |                          |                                 |                                 |                                       |
|                                      |                    |                          |                                 |                                 |                                       |
| rajectory Generation                 | Trajectory Limits- |                          |                                 |                                 |                                       |
| Kinematic Profile                    |                    |                          |                                 |                                 |                                       |
| Trapezoidal Velocity                 | Joint Axis         | VELOCITY                 | ACCELERATION                    | JERK                            |                                       |
| Trapezoidal Acceleration             |                    | [mm/s]                   | [mm/s^2]                        | [mm/s^3]                        |                                       |
| Cubic Acceleration                   | X                  |                          |                                 |                                 |                                       |
| Optimized Feedrate                   | Ξv                 |                          |                                 |                                 |                                       |
| Settings                             |                    |                          |                                 |                                 |                                       |
| Input Shaping Set                    | ΠZ                 |                          |                                 |                                 |                                       |
| Interpolation Type                   |                    |                          |                                 |                                 |                                       |
| Please select an interpolation type: |                    | [rad/s]                  | [rad/s^2]                       | [rad/s^3]                       |                                       |
| Continuous Interpolati               | ΠA                 |                          |                                 |                                 |                                       |
| Settings                             |                    |                          |                                 |                                 |                                       |
| HSM (Smoothing)                      | B                  |                          |                                 |                                 |                                       |
| Hom (Shloothing)                     | 2.22               |                          |                                 |                                 |                                       |
| ✓ Joint Limits Set                   | C                  |                          |                                 |                                 |                                       |
| Spine compressor                     |                    |                          |                                 |                                 |                                       |
|                                      | Trajectory pla     | anning with respect to t | he given velocity, acceleration | on, jerk or torque limits of ea | ch drive axis.<br>Nation Laboratory U |

If you check the Spline Compressor, the spline compressor will be applied for your project as a smoothing type.



#### **1.5 Axis Servo Control Configuration**

In Virtual CNC, you can select control law, lead screw, ball screw or linear drive parameters, as well as amplifier, motor, friction field and sensor so that most machine tools can be reconfigured automatically.

The axis commands are passed on to the control law, which shapes the overall response of the feed drive transfer function, consisting of Digital to Analog(D/A) converter, amplifier, servo motor, inertia, viscous damping, guideway friction and lead screw backlash.

The axis can be configured to have acceleration, velocity and position sensors with defined accuracy and noise parameters. The position error of each axis is evaluated in the feedback loop and combined to predict the contouring error at each control interval.

Configuring the Axis Servo Control Module includes configuring the **FeedDrive**, **Controller**, **Disturbance** and **Feedback Measurement** for each axis.

The axis drive and the control sampling period should be selected first and then the servo control will be configured based on the specified axis.

The A-Axis, B-Axis and C-Axis are available only in the 5-axis machining.





## **<u>1.5.1 Feed Drive Configuration</u>**

The parametric model of the overall feed drive is shown below. Virtual CNC includes four types of models to select for the axis feed drive:

Leadscrew Servo Drive, Linear Servo Motor, Rotary servo Drive, and Transfer Function model include two types: s-domain and zdomain.





When the **Feed Drive** icon is highlight in the interface of Axis Servo Control module, you can see the configuration interface.





### **1.5.1.1 Leadscrew Servo Drive Configuration**

The leadscrew servo drive includes two types: **Rigid-Body Dynamics Drive** and **Flexible Ballscrew Drive**.

If you select the **Rigid-Body Dynamics Drive**, you can configure it by clicking the radial button before the **Leadscrew Servo Drive** first and then clicking the **Settings** button to open the configuration interface of the rigid-body dynamics drive.

If you select the **Flexible Ballscrew Drive**, you can configure it by clicking the radial button before the**Leadscrew Servo Drive** first and then clicking the **Flexible Ballscrew Drive** button to open the configuration interface of the flexible ballscrew drive.





## **1.5.1.2 Leadscrew Servo Drive (Rigid-Body Dynamics)**

When selecting the **Leadscrew Servo Drive** and clicking the**settings** icon, you can open the interface of drive parameters and input physical parameters of the drive.

Three sections of the parameters for the rigid body dynamics drive should be set up properly: **Dynamic Loads**, **Electronic Drives** and **Mechanical Drive**.

By clicking the **Block Diagram** button on the bottom of the interface, you can see the block diagram structure of **Rigid-Body Dynamics Model** with **Leadscrew drive** mechanism.

| Dynamic Loads               |                              |
|-----------------------------|------------------------------|
| Total Reflected Inertia (J) | [kgm^2]                      |
| Viscous Damping (B)         | [Nms/rad]                    |
| Use Advanced Settings       | Flexible Ball Screw Settings |
| Electronic Drive            |                              |
| D/A Converter bit           | [bit]                        |
| DAC Voltage Range +/        | . [V]                        |
| Current Amplifier Gain (Ka) | [A/V]                        |
| Transfer Function           | Edit                         |
| Motor Constant (Kt)         | [Nm/A]                       |
| Torque Limit +/             | . [Nm]                       |
| Mechanical Drive            |                              |
| Pitch Length                | [mm]                         |
| Gear Reduction Ratio        |                              |
| Transmission Ratio (rg)     | [mm/rad]                     |
| Backlash                    | [mm]                         |
|                             |                              |





#### **Dynamic Loads:**

In this section the values of total reflected inertia and viscous damping are set up.

Alternately, you can check and select **Use Advanced**. After click the **Settings** button, you can open the interface of **Total Inertia Calculation** and then need input the mass and inertia of each component of the lead drive.

After clicking the **CALCULATE** icon, the total reflected inertia will be calculated and shown in the dialog box.



#### **Electronic Drive:**

| Masses and Inertia      |         |  |  |
|-------------------------|---------|--|--|
| Mass of Table           | [kg]    |  |  |
| Mass of Workpiece       | [kg]    |  |  |
| Mass of Leadscrew Shaft | [kg]    |  |  |
| Inertia of Motor Shaft  | [kgm*2] |  |  |
| Leadscrew Shaft         |         |  |  |
| Pitch Length            | [mm]    |  |  |
| Pitch Diameter          | [mm]    |  |  |
| Gear Reduction Ratio    |         |  |  |
| CALCULA                 | TE      |  |  |
| nertia                  |         |  |  |
| Table and Workpiece     | [kgm*2] |  |  |
| Leadscrew Shaft         | [kgm*2] |  |  |
| Motor Shaft             | [kgm*2] |  |  |
| Total Reflected Inertia | [kgm*2] |  |  |

The current amplifier can be defined either by a constant gain (Ka) or by a transfer function.

When you check the **Transfer Function**, and click the **Edit** icon, you can define the polynomial order and coefficients of the numerator and denominator of the amplifier transfer function.

| ransfer Function in s-Domain                                                                                                |                                                                     |                   |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------|
| $G_p(s) = \frac{B(s)}{A(s)} = \frac{b_0 s^m + b_1 s^{m-1}}{n}$                                                              | $+b_2s^{m-2}+b_3s^{m-3}$                                            | ++b <sub>m</sub>  |
| $a_0s^n + a_1s^{n-1}$                                                                                                       | $+a_2s^{n-2}+a_3s^{n-3}$                                            | ++a <sub>n</sub>  |
| lumerator                                                                                                                   |                                                                     |                   |
| $B(s) = b_0 s^m + b_1 s^{m-1} + b_2 s^m$                                                                                    | $s^{m-2} + b_3 s^{m-3} +$                                           | .+ b <sub>m</sub> |
| Order of Numerator                                                                                                          | OK C                                                                | ear               |
| B(S) Please enter the coefficient                                                                                           | ents of the polynomials                                             |                   |
| Denominator                                                                                                                 |                                                                     |                   |
| Denominator<br>$\mathcal{A}(s) = a_0 s'' + a_1 s''^{-1} + a_2 s''^{-1}$                                                     | $s^{n-2} + a_3 s^{n-3} + \dots$                                     | + a <sub>n</sub>  |
| Denominator<br>$A(s) = a_0 s'' + a_1 s''^{-1} + a_2$ :<br>Order of Denominator                                              | s <sup>n-2</sup> + a <sub>3</sub> s <sup>n-3</sup> +                | + a <sub>n</sub>  |
| Denominator<br>$A(s) = a_0 s'' + a_1 s''^{-1} + a_2$<br>Order of Denominator<br><b>A(S)</b> Please erter the coeffici       | $s^{n-2} + a_3 s^{n-3} + \dots$                                     | + a <sub>n</sub>  |
| Denominator<br>$A(s) = a_0 s'' + a_1 s''^{-1} + a_2$<br>Order of Denominator<br><b>A(S)</b> Please erter the coefficient    | $s^{n-2} + a_3 s^{n-3} + \dots$<br>OK CI<br>ents of the polynomials | + a <sub>n</sub>  |
| Denominator<br>$A(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^n$<br>Order of Denominator<br><b>A(s)</b> Please enter the coefficient | $s^{n-2} + a_3 s^{n-3} + \dots$<br>OK Ci<br>ents of the polynomials | + a <sub>n</sub>  |
| Denominator<br>$A(s) = a_0 s^n + a_1 s^{n-1} + a_2$ .<br>Order of Denominator<br><b>A(S)</b> Please erter the coefficient   | $s^{n-2} + a_3 s^{n-3} +$<br>OK CF<br>ents of the polynomials       | + a <sub>n</sub>  |



#### **Mechanical Drive:**

In this section, you can include the friction in the feed drive model.

By checking the **Include Friction Model** and clicking **Settings** button, the interface of **Non-linear Friction Model Parameters** will open.

| Model                               |                |         |
|-------------------------------------|----------------|---------|
| Coulomb Friction Only               | Stribeck Curve |         |
| Coulomb Friction on Guideway        |                |         |
| Positive Coulomb Friction (Tc+)     |                | [Nm]    |
| Negative Coulomb Friction (Tc-)     |                | [Nm]    |
| Static Friction on Guideway         |                |         |
| Positive Static Friction (Ts+)      |                | [Nm]    |
| Negative Static Friction (Ts-)      |                | [Nm]    |
| Velocity Constants                  |                |         |
| Positive Velocity Constant 1 (Omega | 1+)            | [rad/s] |
| Negative Velocity Constant 1 (Omega | x1-)           | [rad/s] |
| Positive Velocity Constant 2 (Omega | 2+)            | [rad/s] |
| Negative Velocity Constant 2 (Omega | 12-)           | [rad/s] |
| See Friction Cuere                  | OK             | Cance   |

Then you can select between two types of models: **Coulomb Friction** and **Stribeck Friction**, and specify the friction parameters. The friction curve will be shown after you click the **See Friction Curve** icon.









## **<u>1.5.2 Flexible ball screw Configuration</u>**

Ball screw drives provide thrust and linear motion at the machine tool table by transmitting power from a rotary motor through a ball screw mechanism. They are commonly used in machine tools because of their relatively high stiffness to cutting force disturbances and low sensitivity to variations in workpiece inertia as a result of their inherent gear reduction ratio.

If you select a ball screw drive for one axis, you should configure the axis drive in this section. Click the **Feed Drive** icon in the Axis Servo Drive module, and when the **Feed Drive** icon is highlighting, select the **Leadscrew Servo Drive** radial button and click the **Flexible ballscrew Drive** icon below.





This opens the structure design interface of the flexible ballscrew drive.

Configuration of a ball screw drive includes three steps: **Modeling, Analysis,** and **Loading the result.** 

| sign Tool     | box        | -             |              |         |              |             |         |         |         |          | Analysis Toolbo  |
|---------------|------------|---------------|--------------|---------|--------------|-------------|---------|---------|---------|----------|------------------|
| Ballscrew     | •          | Modify/ BUILD | Insert New   | Delete  |              |             |         |         |         |          | Load Model       |
| Ballscrew     | Name       | x-Coord       | y-Coord      | z-Coord | 1st Node #   | Orientation | x (DOF) | y (DOF) | z (DOF) |          | Save Model       |
|               |            |               |              |         |              |             |         |         |         | -        |                  |
| 4             |            |               |              |         | 9 93<br>9 99 |             |         |         | •       | <u> </u> | Modal Analysis   |
| is to Display | Ballscrew  | V Nuts V      | Rigid Bodies | Joints  | Show all     | Pan         | Zoom    | Rotate  | Off     |          | Reduced-order TF |
| el            |            |               |              |         |              |             |         |         |         |          |                  |
|               | • X        |               |              |         |              |             |         |         |         |          |                  |
| Z<br>(        | X Node No: |               |              |         |              |             |         |         |         |          |                  |



### **<u>1.5.2.1 Modeling a Ballscrew Drive</u>**

Click the **Feed Drive** icon in the Axis Servo Drive module, and when the **Feed Drive** icon is highlighting, select the **Leadscrew Servo Drive** radial button and click the **Flexible ballscrew Drive** icon below. This opens the structure design interface of the flexible ballscrew drive.

| igid Bod      | y -       | Modify/ BUILD | Insert Nev      | v Delete |          |      |          |           |             |          |                |
|---------------|-----------|---------------|-----------------|----------|----------|------|----------|-----------|-------------|----------|----------------|
| ligid Bodies_ |           |               |                 |          |          |      |          |           |             |          | Load Model     |
| No.           | Name      | Ballscrew #   | ×               | У        | Z        | Mass | lxx      | lyy       | lzz         | <b>_</b> |                |
| 1             | Table     | 1             | 362.25          | 0        | 61.5     | 19   | 0.165707 | 0.0989172 | 0.0816945   |          | Save Model     |
| 2             | Motor     | 1             | 850             | 0        | 0        | 0    | 0        | 0         | 9.65e-005   |          |                |
| 3             | Encode1   | 1             | 780.74          | 0        | 0        | 0.68 | 0        | 0         | 8.5e-005    |          |                |
| 4             | Encode2   | 1             | 0               | 0        | 0        | 0.68 | 0        | 0         | 8.5e-005    |          |                |
| 5             | jawBS     | 1             | 810             | 0        | 0        | 0.1  | 0        | 0         | 2e-005      |          |                |
| 6             | Tach      | 1             | -15             | 0        | 0        | 0    | 0        | 0         | 9.3121e-007 | -        | Modal Analysis |
| Node Number   | Ballscrew | V Nuts        | /] Rigid Bodies | Joints   | Show all |      |          |           |             |          |                |

By clicking the **Load Model** button in the **Analysis Toolbox**, you can select an existing flexible ballscrew drive model under the file path Virtual CNC /Ballscrew / ubcBS.mat. After loading the structure of the example ballscrew can be shown in the interface.

In the **Design Toolbox**, you can select one of the four types of the structure: **Ballscrew**, **Nut**, **Rigid Body** and **Joint**. Then by clicking one item of the table and the **Modify**, **Insert New** or **Delete** button, you can design the structure.



For example: after selecting **Ballscrew**, clicking the No.1 item in the ballscrew table, and clicking the **Modify/BUILD**button, the interface of **Ballscrew Parameter Configuration** will be open. Then you can configure the parameters of the ballscrew.

|                                                                               |                                                                                                                                                                                                                                                                                | Ballscrew                                                                                    | Number                                                                             |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                    |                                                         |                                                                                                              |                                                                                                    |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                               |                                                                                                                                                                                                                                                                                | Ballscrew                                                                                    | Name                                                                               | Ba                                                                                                                                                                                                                                                                                                          | Iscrew                                                                                                               |                                                         |                                                                                                              |                                                                                                    |
| Configure of th                                                               | ne first element                                                                                                                                                                                                                                                               | ×                                                                                            | у0                                                                                 | ] z 0                                                                                                                                                                                                                                                                                                       |                                                                                                                      |                                                         |                                                                                                              |                                                                                                    |
| Number of the                                                                 | first element nod                                                                                                                                                                                                                                                              | e 1                                                                                          |                                                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                         |                                                                                                              |                                                                                                    |
| xis Orientation                                                               | n                                                                                                                                                                                                                                                                              | x                                                                                            | ▼ Mod                                                                              | el Colour (for plot                                                                                                                                                                                                                                                                                         | ting)                                                                                                                |                                                         |                                                                                                              |                                                                                                    |
|                                                                               |                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                      |                                                         |                                                                                                              |                                                                                                    |
| - Degrees o                                                                   | of Freedom To Co                                                                                                                                                                                                                                                               | nsider                                                                                       |                                                                                    |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                    |                                                         |                                                                                                              |                                                                                                    |
| Degrees o                                                                     | of Freedom To Co                                                                                                                                                                                                                                                               | r (rol                                                                                       | I) 🔲 p. (pite                                                                      | h) 🔲 v (vav                                                                                                                                                                                                                                                                                                 | a l                                                                                                                  |                                                         |                                                                                                              |                                                                                                    |
| Degrees o                                                                     | of Freedom To Co                                                                                                                                                                                                                                                               | nsider<br>z v r (rol                                                                         | ll) 🔲 p (pitc                                                                      | ch) 🔲 y (yaw                                                                                                                                                                                                                                                                                                | 0                                                                                                                    |                                                         |                                                                                                              |                                                                                                    |
| Ballscrew                                                                     | of Freedom To Co                                                                                                                                                                                                                                                               | nsider<br>  z                                                                                | ll) 🔲 p (pito                                                                      | ch) 🔲 y (yaw                                                                                                                                                                                                                                                                                                | 0                                                                                                                    |                                                         |                                                                                                              |                                                                                                    |
| Ballscrew                                                                     | of Freedom To Co                                                                                                                                                                                                                                                               | nsider<br>Z                                                                                  | ll) 🔲 p (pitc                                                                      | bh) 🕅 y (yaw                                                                                                                                                                                                                                                                                                | )                                                                                                                    |                                                         | Show M                                                                                                       | laterial List                                                                                      |
| Ballscrew                                                                     | of Freedom To Co                                                                                                                                                                                                                                                               | z V r (rol                                                                                   | II) 🔲 p (pitc                                                                      | ch) 🔲 y (yaw                                                                                                                                                                                                                                                                                                | Length (mm)                                                                                                          | # Elements                                              | Show M                                                                                                       | laterial List<br>Threaded (Y/N)                                                                    |
| Degrees of<br>x Ballscrew Section #                                           | of Freedom To Co                                                                                                                                                                                                                                                               | z                                                                                            | II) 🔲 p (pitc                                                                      | b)                                                                                                                                                                                                                                                                                                          | Length (mm)                                                                                                          | # Elements                                              | Show M<br>Material<br>Steel                                                                                  | laterial List<br>Threaded (Y/N)<br>1                                                               |
| Degrees of<br>X x<br>Ballscrew<br>Section #                                   | of Freedom To Co                                                                                                                                                                                                                                                               | onsider<br>z                                                                                 | II)                                                                                | b) y (yaw Pitch (mm) 0 0                                                                                                                                                                                                                                                                                    | Length (mm)<br>15<br>10                                                                                              | # Elements<br>1<br>1                                    | Show M<br>Material<br>steel<br>steel                                                                         | laterial List<br>Threaded (Y/N)<br>1<br>1                                                          |
| Degrees of<br>X x Ballscrew Section #                                         | of Freedom To Co                                                                                                                                                                                                                                                               | 0.D. (mm)<br>15<br>15<br>18.9                                                                | II)                                                                                | <ul> <li>b) y (yaw</li> <li>Pitch (mm)</li> <li>0</li> <li>0</li> <li>20</li> </ul>                                                                                                                                                                                                                         | <ul> <li>Length (mm)</li> <li>15</li> <li>10</li> <li>710</li> </ul>                                                 | # Elements 1 1 40                                       | Show M<br>Material<br>steel<br>steel<br>steel                                                                | laterial List<br>Threaded (Y/N)<br>1<br>1<br>1<br>1                                                |
| Degrees c<br>x<br>Ballscrew<br>Section #<br>1<br>2<br>3<br>4                  | bf Freedom To Co                                                                                                                                                                                                                                                               | z         ▼ r (ro)           0.D. (mm)           15           15           18.9           16 | II)                                                                                | <ul> <li>Pitch (mm)</li> <li>0</li> <li>20</li> <li>0</li> </ul>                                                                                                                                                                                                                                            | Length (mm)<br>15<br>10<br>710<br>10                                                                                 | # Elements 1 1 40 1                                     | Show M<br>Material<br>steel<br>steel<br>steel<br>steel<br>steel                                              | laterial List Threaded (Y/N) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 |
| Degrees c<br>x<br>Ballscrew<br>Section #<br>1<br>2<br>3<br>4<br>5             | bf Freedom To Co           y           Section           I.D. (mm)           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | O.D. (mm)           15           15           16           19.5                              | II)                                                                                | <ul> <li>Pitch (mm)</li> <li>0</li> <li>0</li> <li>20</li> <li>0</li> <li>0</li> </ul>                                                                                                                                                                                                                      | <ul> <li>Length (mm)</li> <li>15</li> <li>10</li> <li>710</li> <li>10</li> <li>15</li> </ul>                         | # Elements 1 1 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1       | Show M<br>Material<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel                                     | laterial List Threaded (Y/N) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 |
| Degrees of<br>X<br>Ballscrew<br>Section #<br>1<br>2<br>3<br>4<br>5<br>6       | of Freedom To Co<br>y<br>Section<br>1.D. (mm)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                           | z     ▼ r (ro       0.D. (mm)       15       15       16       19.5       15                 | II)                                                                                | <ul> <li>Pitch (mm)</li> <li>0</li> <li>0</li> <li>20</li> <li>0</li> <li>0</li> <li>0</li> </ul>                                                                                                                                                                                                           | <ul> <li>Length (mm)</li> <li>15</li> <li>10</li> <li>710</li> <li>10</li> <li>15</li> <li>40</li> </ul>             | # Elements 1 1 4 0 1 1 2                                | Show M<br>Material<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel                   | laterial List Threaded (Y/N) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 |
| Degrees c<br>X<br>Ballscrew f<br>Section #<br>1<br>2<br>3<br>4<br>5<br>3<br>7 | of Freedom To Co<br>y<br>Section<br>1.D. (mm)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                       | O.D. (mm)       15       15       16       19.5       15       12                            | II) p (pito<br>R.D. (mm)<br>0<br>18.2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Pitch (mm)           0           20           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0 | <ul> <li>Length (mm)</li> <li>15</li> <li>10</li> <li>710</li> <li>10</li> <li>15</li> <li>40</li> <li>20</li> </ul> | # Elements 1 1 40 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 | Show M<br>Material<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel<br>steel | laterial List<br>Threaded (Y/N) ▲<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |

After modeling a new ballscrew structure, you should save your new model by clicking the **Save Model** button in the **Analysis Toolbox**.



## **1.5.2.2 Analysis of a Ballscrew Drive**

You can analyze the FRF of a ballscrew drive by clicking the **Modal Analysis** button and export the transfer function result of the ballscrew drive by clicking the **Reduced-order TF** button in the **Analysis Toolbox**.

## • Modal Analysis:

After clicking **Modal Analysis** button, this interface will open. Selecting a row in the **Frequency** table and clicking the **Plot selected Frequency Response** button, you can see the plot of the frequency response function for the designated nodes number and the frequency range.

| 0         |                 | l l r | Number | Node 1          | Node 2        | Start Fred [Hz] | End Fred [Hz] | Damping Ratio |
|-----------|-----------------|-------|--------|-----------------|---------------|-----------------|---------------|---------------|
| Clear All | Frequency (Hz)  |       |        | E4              | 50            | 100             | 1000          | 0.01          |
| Mode #    | Frequency [nz]  |       | e      | 51              | 50            | 100             | 1000          | 0.01          |
|           | 0.00213242      |       | 2      | 51              | 50            | 100             | 1000          | 0.01          |
|           | 34.5817         |       |        |                 |               |                 |               |               |
|           | 40.0394         |       |        | 2               |               |                 |               |               |
|           | 246.312         |       |        |                 |               |                 |               |               |
|           | 250.964         |       |        |                 |               |                 |               |               |
|           | 268.026         |       | F      | lot selected Fi | equency Respo | nse             | Modify In     | sert Delete   |
|           | 375.982         |       |        |                 |               |                 |               |               |
|           | 399.062         |       |        |                 |               |                 |               |               |
|           | 402.19          |       |        |                 |               |                 |               |               |
| 0         | 628.93          |       |        |                 |               |                 |               |               |
| 1         | 687.067         |       |        |                 |               |                 |               |               |
| 2         | 691.299         |       |        |                 |               |                 |               |               |
| 3         | 853.383         |       |        |                 |               |                 |               |               |
| 4         | 991.989         |       |        |                 |               |                 |               |               |
| 5         | 1018.14         |       |        |                 |               |                 |               |               |
| 6         | 1020.01         |       |        |                 |               |                 |               |               |
| 7         | 1076.5          |       |        |                 |               |                 |               |               |
| 8         | 1094.56         |       |        |                 |               |                 |               |               |
| 9         | 1159.24         | -     |        |                 |               |                 |               |               |
| Config    | ure Mode Shanes |       |        |                 |               |                 |               |               |
| Connigu   | are moue snapes |       |        |                 |               |                 |               |               |

Before the plot, maybe you need **Modify, Insert** or **Delete** the configuration of the row you want.


Taken **Modify** as an example, you can select the row Number you want in the **Frequency** table and click the **Modify** button to open the FRF configuration interface.

The Nodes parameters and the plot settings should be configured based on your model properly. After configuration, click the **OK** button to save.

Plot the frequency response function again after the FRF configuration, and see a new FRF result.

| RF Number 1                                 | Plot Settings                   |                                         |
|---------------------------------------------|---------------------------------|-----------------------------------------|
| Node 1                                      | Start Frequency                 | 100 [Hz]                                |
|                                             | End Frequency                   | 1000 [Hz]                               |
|                                             | Plot Type                       | Displacement                            |
|                                             | Plot Data Type                  | Magnitude - Phase 💌                     |
| x y z v (rolli p (pitch) y (yaw)            | Damping Ratio                   | 0.01                                    |
|                                             | Mode Specific<br>Damping Ratios | Add                                     |
| Node 2                                      | 1                               | Format: [Mode, DampingRatio]            |
| Node 2 Number 50                            |                                 | [4,0.0277]                              |
| Distance from COM to FRF Point x 0 Y81 z 90 |                                 |                                         |
| - Degrees of Freedom To Consider            | Delete                          | •                                       |
| ☑ x                                         | Set the transfer fun            | ction as the transfer function of the a |
|                                             |                                 |                                         |

#### • Reduced-order TF

In the structure design interface of the flexible ballscrew drive, clicking the **Reduced-order TF** button in the **Analysis Toolbox**, you can plot, fit and export the transfer-function.



| Interface_Transfer_Functio                          | n                                                    |                 |     | -   | 1   |     | 100 | -   |     |     |          | x |
|-----------------------------------------------------|------------------------------------------------------|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|----------|---|
| Method<br>Manual<br>Automatic<br>Include rigid mode | Cut-Off Frequency [Hz] Damping ratio Number of modes | 1<br>0.8<br>0.6 |     |     |     |     |     |     |     |     |          |   |
| VO setup<br>Input node<br>Degree of freedom to co   | onsider<br>⊙ r (roll) ⊙ p (pitch) ⊙ y (yaw)          | 0.4 -           | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9      | 1 |
| Output node<br>Degree of freedom to co<br>x y z     | onsider.<br>◎ r (roll) ◎ p (pitch) ◎ y (yaw)         | 0.5 -           |     |     |     |     |     |     |     |     |          |   |
| Plot                                                | Fit Export                                           | 0               | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | i<br>0.9 | 1 |

You should define all the parameters in the **Method**, **Setup** and **I/O setup** sections first.

### It includes defining **Manual** or **Automatic**, if you want to **include rigid mode**, **Cut-Off Frequency**, **Damping ratio** and **the number of modes**, **input node** and **output node**.

After finishing the definition of all the parameters, click the **Plot** button, the magnitude and phase angle of the frequency response function will be shown.

Click the **Fit** button and the frequency response function curves from the finite element model are fitted and plotted.

Click the **Export** button to export and save the transfer function file of the flexible ballscrew drive model, which is saved as a tf file. The coefficients of the ballscrew drive transfer function can be extracted from the .tf file and input in the transfer function model in s-domain.





Close the configuration interfaces of the flexible ballscrew.



#### **1.5.2.3 Loading the Transfer Function of a Ballscrew Drive**

If you want to import the transfer function, which was exported from the flexible ball screw module to replace the parameters of J and B in rigid body model, you should open the interface of the **Leadscrew Drive Parameters** first.

Selecting the Leadscrew Servo Drive and clicking the settings icon, you can open the interface of **Leadscrew Drive Parameters**.





| Dynamic Loads               |     |         |                        |
|-----------------------------|-----|---------|------------------------|
| Total Reflected Inertia (J) | 1   |         | [kgm^2]                |
| Viscous Damping (B)         | 1   |         | [Nms/rad]              |
| Use Advanced Settings       |     | Flexibl | le Ball Screw Settings |
| Electronic Drive            | _   |         |                        |
| D/A Converter bit           | 1   |         | [bit]                  |
| DAC Voltage Range           | +/- |         | [1]                    |
| Current Amplifier Gain (Ka) | 8 1 |         | [A/V]                  |
| Transfer Function           | 1   | Edt     |                        |
| Motor Constant (Kt)         | ſ   |         | [Nm/A]                 |
| Torque Limit                | +/- |         | [Nm]                   |
| Mechanical Drive            |     |         |                        |
| Pitch Length                | 1   |         | [mm]                   |
| Gear Reduction Ratio        | 1   |         |                        |
| Transmission Ratio (rg)     |     |         | [mm/rad]               |
| Backlash                    | 1   |         | [mm]                   |
|                             |     |         | 1                      |

After opening the interface of **Leadscrew Drive Parameters**, you should check **Flexible ball screw** and click the **settings** button in the **Dynamic Loads** section to open the Interface for loading the flexible ball screw transfer function.



| $G_p(s) =$                      | $\frac{B(s)}{A(s)} = \frac{b_0 s^m + b_1 s^{m-1} + b_2 s^{m-2} + b_3 s^{m-3} + \dots + b_m}{a_1 a_2 a_2 a_3 a_4 a_5 a_5 a_5 a_5 a_5 a_5 a_5 a_5 a_5 a_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| umarator                        | $a_0s + a_1s + a_2s + a_3s + \dots + a_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D(a)                            | $L_{m}$ , $L_{m-1}$ , $L_{m-2}$ , $L_{m-3}$ , $L_{m-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B(s) =                          | $b_0s + b_1s + b_2s + b_3s + \dots + b_m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| c                               | Order of Numerator OK Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| B(s)                            | Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| enominat                        | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| enominat $A(s) =$               | or $a^{n} + a^{n-1} + a^{n-2} + a^{n-3} + a^{$ |
| enominat<br>A(s) =              | or<br>= $a_0s^n + a_1s^{n-1} + a_2s^{n-2} + a_3s^{n-3} + \dots + a_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| enominat<br>A(s) =<br>0         | or<br>= $a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + a_3 s^{n-3} + \dots + a_n$<br>rder of Denominator OK Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| enominat<br>A(s) =<br>o<br>A(s) | or<br>$= a_0 s'' + a_1 s^{n-1} + a_2 s^{n-2} + a_3 s^{n-3} + \dots + a_n$ rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| enominat<br>A(s) =<br>o<br>A(s) | or<br>$= a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + a_3 s^{n-3} + \dots + a_n$ rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| enominat<br>A(s) =<br>o<br>A(s) | or<br>$= a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2} + a_3 s^{n-3} + \dots + a_n$ rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| enominat<br>A(s) =<br>o<br>A(s) | or<br>= $a_0s'' + a_1s''^{-1} + a_2s''^{-2} + a_3s''^{-3} + \dots + a_n$<br>rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| enominat<br>A(s) =<br>o<br>A(s) | or<br>= $a_0s'' + a_1s^{n-1} + a_2s^{n-2} + a_3s^{n-3} + \dots + a_n$<br>rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A(s) =<br>0<br>A(s)             | or<br>= $a_0s^n + a_1s^{n-1} + a_2s^{n-2} + a_3s^{n-3} + \dots + a_n$<br>rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A(s) =<br>0<br>A(s)             | or<br>= $a_0s'' + a_1s^{n-1} + a_2s^{n-2} + a_3s^{n-3} + + a_n$<br>rder of Denominator OK Clear<br>Please enter the coefficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| indifferent director                                                                          | n in s-Domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| G(s) = B(s)                                                                                   | $b_0 s^m + b_1 s^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $^{-1} + b_2 s^{m-2} + b_3 s^{m-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $++b_{m}$                |
| $G_p(s) = \frac{1}{A(s)}$                                                                     | $=$ $a_0s^n + a_1s^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $^{-1} + a_2 s^{n-2} + a_3 s^{n-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++a,,                    |
| Numerator                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| $B(s) = b_1 s^n$                                                                              | $+ h s^{m-1} + l$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $b_{s}s^{m-2} + b_{s}s^{m-3} + b_{s$ | + h                      |
| 2(3) - 003                                                                                    | 195 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25 1035 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Order of                                                                                      | f Numerator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 OK C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lear                     |
| B(S) Plea                                                                                     | ase enter the coef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ficients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
| e*2                                                                                           | eA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
| 2 9337                                                                                        | 67 831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2875656 5194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| -                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| Denominator<br>$A(s) = a_s s^h$                                                               | $+ a s^{n-1} + a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $a_n s^{n-2} + a_n s^{n-3} + .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + a                      |
| Denominator<br>$A(s) = a_0 s^n$                                                               | $a + a_1 s^{n-1} + a_2 s^{n-1$ | $a_2 s^{n-2} + a_3 s^{n-3} + .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + a <sub>n</sub>         |
| Denominator<br>$A(s) = a_0 s^n$<br>Order of                                                   | $a + a_1 s^{n-1} + a_n$<br>Denominator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $a_2 s^{n-2} + a_3 s^{n-3} + .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + a <sub>n</sub><br>lear |
| Denominator<br>$A(s) = a_0 s^n$<br>Order of<br><b>A(s)</b> Piez                               | $a^{n} + a_{1}s^{n-1} + a_{2}s^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_2 s^{n-2} + a_3 s^{n-3} + .$<br>4 OK C<br>icients of the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + a <sub>n</sub>         |
| Denominator<br>$A(s) = a_0 s^n$<br>Order of<br><b>A(s)</b> Pleases                            | $a' + a_1 s^{n-1} + a_n$<br>Denominator<br>ase enter the coeff<br>s^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_2 s^{n-2} + a_3 s^{n-3} + .$<br>4 OK C<br>ficients of the polynomials<br>$s^{*2}$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + a <sub>n</sub><br>lear |
| Denominator<br>$A(s) = a_0 s'$<br>Order of<br><b>A(s)</b> Plea<br>s <sup>44</sup><br>0.098696 | $a^{n} + a_{1}s^{n-1} + a_{1}$<br>Denominator<br>ase enter the coeff<br>$s^{*3}$<br>6.6947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a_2 s^{n-2} + a_3 s^{n-3} + .$<br>4 OK C<br>ficients of the polynomials<br>$s^{A2}$ s<br>283815.9224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + a <sub>n</sub><br>lear |
| Denominator<br>$A(s) = a_0 s^n$<br>Order of<br><b>A(s)</b> Plea<br>s^4<br>0.098696            | $a' + a_1 s^{n-1} + a_1$<br>Denominator<br>ase enter the coeff<br>s <sup>A3</sup><br>6.6947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a_2 s^{n-2} + a_3 s^{n-3} + .$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + a <sub>n</sub><br>lear |
| Denominator<br>$A(s) = a_0 s^n$<br>Order of<br><b>A(s)</b> Plea<br>s^4<br>0.098696            | $a^{n} + a_{1}s^{n-1} + a_{1}s^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $a_2 s^{n-2} + a_3 s^{n-3} + .$<br>4 OK C<br>incients of the polynomials<br>$s^{42}$ s<br>283815.9224<br>LOAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + a <sub>n</sub><br>lear |



Click the **LOAD** button to select and open the tf file which was exported before as the transfer function of the flexible ball screw drive model.

After loading the exported flexible ball screw transfer function, you can see the detail information of the flexible ball screw transfer function, including the numerator, order of numerator, denominator, and order of denominator of the flexible ball screw transfer function.

After clicking the **OK** button you finish importing the flexible ball screw transfer function.



## **1.5.3 Linear Servo Motor Configuration**

Click the **Feed Drive** icon in the Axis Servo Drive module, and when the **Feed Drive** icon is highlighting, select the **Linear Servo Motor** radial button and click the **Settings** button.

| Virtual CNC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| File Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | اد<br>ا               |
| Axis Configuration Toolpath Files Generation Axis Servo Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SIMULATION            |
| Axis Servo Motion Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Control Sampling Period (Ts)       0.001     [s]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selection Summary     |
| AXIS DRIVE<br>• X-Axis<br>• X-Axis | Axis<br>X-Axis        |
| ⊘ Y-Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Linear                |
| Z-Axis     Feedback Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Controller            |
| ○ A-Axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Feedback              |
| B-Axis X-Axis- FEED DRIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pos                   |
| C-Axis                                                                                                                                                                                              | Disturbance<br>None   |
| Rotary Servo Drive     Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| © Manufacturing Autom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ation Laboratory, UBC |

This opens the interface of Linear Drive Parameters.

Two sections of the parameters for the linear motor drive should be set up properly: **Dynamic Loads** and **Electronic Drive**.

By clicking the **Block Diagram** button on the bottom you can see the block diagram structure of Rigid-Body Dynamics Model with Linear Motor Driven mechanism.







## **1.5.4 Rotary Servo Drive Configuration**

Click the **Feed Drive** icon in the Axis Servo Drive module, and when the **Feed Drive** icon is highlighting, select the **Rotary Servo Drive** radial button and click the **Settings** button.



This opens the interface of Rotary Drive Parameters.

Three sections of the parameters for the rotary drive should be set up properly: **Dynamic Loads**, **Mechanical Settings** and **Electronic Drive**.

By clicking the **Block Diagram** button on the bottom you can see the block diagram structure of Rigid-Body Dynamics Model with Rotary Motor Driven mechanism.



| A-Axis Rotary Drive Parameters               |                                                             |                                                                    |                                                              |                                      |
|----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|
| - Dynamic Loads                              |                                                             |                                                                    |                                                              |                                      |
| Contact Inertia<br>(Inertia in Linear Model) | [kgm*2]                                                     |                                                                    |                                                              |                                      |
| Non Contact Inertia                          | [kgm^2]                                                     |                                                                    |                                                              |                                      |
| Contact Damping<br>(Damping in Linear Model) | [Nm/(rad/s)]                                                |                                                                    |                                                              |                                      |
| Non Contact Damping                          | [Nm/(rad/s)]                                                |                                                                    |                                                              |                                      |
| Mechanical Settings                          |                                                             |                                                                    |                                                              |                                      |
| Coulomb Friction                             | [Nm]                                                        |                                                                    |                                                              |                                      |
| Gear Reduction Ratio                         |                                                             |                                                                    |                                                              |                                      |
| Backlash                                     | [mm]                                                        |                                                                    |                                                              |                                      |
| Electronic Drives                            |                                                             |                                                                    |                                                              |                                      |
| D/A Convertor bit                            | [bit]                                                       |                                                                    |                                                              |                                      |
| DAC Voltage Range +/-                        | [Volt]                                                      |                                                                    |                                                              |                                      |
| Current Amplifier Gain (Ka)                  | [A/Volt]                                                    |                                                                    |                                                              |                                      |
| Motor Constant (Kt) Torque Limit +/-         | [Nm/A]<br>[Nm]                                              |                                                                    |                                                              |                                      |
| Block Diagram Clear                          | OK Cancel                                                   |                                                                    |                                                              |                                      |
| 👃 Block Diagram Rotary Mc                    | otor Rigid Body Dynamics                                    |                                                                    |                                                              |                                      |
|                                              |                                                             |                                                                    |                                                              |                                      |
| Rigid-Body Dynamics Mo                       | del with Rotary Motor Di                                    | iven Mechanis                                                      | m                                                            |                                      |
|                                              |                                                             | 1.00                                                               |                                                              |                                      |
|                                              |                                                             | e a                                                                |                                                              |                                      |
|                                              |                                                             | ance                                                               |                                                              |                                      |
|                                              |                                                             | ernal<br>turbance                                                  |                                                              |                                      |
|                                              |                                                             | External<br>Disturbance                                            |                                                              |                                      |
| Saturatio                                    | n Motor                                                     | External                                                           | Mass-Spring-Dampe                                            | er                                   |
| Saturatio                                    | n Motor<br>Gain                                             | External<br>Disturbance                                            | Mass-Spring-Dampe<br>System                                  | er                                   |
| Saturatio<br>Limit                           | n Motor<br>Gain                                             | ■<br>■<br>■<br>■<br>■<br>■<br>■<br>■<br>■<br>■<br>■<br>■<br>■<br>■ | Mass-Spring-Dampe<br>System                                  | er<br>X <sub>a</sub>                 |
| Saturatio<br>Limit<br>Control                | n Motor<br>Gain<br>K_aK_t                                   | L Disturbance                                                      | Mass-Spring-Dampe<br>System<br>1<br>Ms <sup>2</sup> + Bs + K | X <sub>a</sub><br>Actual<br>Position |
| Saturatio<br>Limit<br>Control<br>Signal      | in Motor<br>Gain<br>$K_a$ $i$ $K_t$<br>Current<br>Amplifier | L Disturbance                                                      | Mass-Spring-Dampo<br>System<br>1<br>Ms <sup>2</sup> + Bs + K | Xa<br>Actual<br>Position             |



### **<u>1.5.5 Transfer Function Model (s-domain and z-domain)</u></u> <u>Configuration</u>**

Click the **Feed Drive** icon in the Axis Servo Drive module, and when the **Feed Drive** icon is highlighting, select one radial button below the **Transfer Function Model**, either **s-domain** or **z-domain** and click the **Settings** button.







This opens the interface of the transfer function configuration.

You can input the transfer function parameters of the feed drive in the sdomain or z-domain.

The parameters include the polynomial orders and coefficients of the numerator and denominator.



| Transfer Function in s-Domain<br>$G_p(s) = \frac{B(s)}{A(s)} = \frac{b_0 s^m + b_1 s^{m-1} + b_2 s^n}{a_0 s^n + a_1 s^{n-1} + a_2 s^n}$ | $a^{m-2} + b_3 s^{m-3} + \dots + a_3 s^{n-3} + \dots + a_3 s^{n-3} + \dots + a_n s^{n-2} + \dots + $ | $\frac{b_m}{a_n}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Numerator                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |
| $B(s) = b_0 s^m + b_1 s^{m-1} + b_2 s^{m-2}$                                                                                            | $+ b_3 s^{m-3} + \dots + b_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n                 |
| Order of Numerator                                                                                                                      | OK Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| B(S) Please enter the coefficients of                                                                                                   | the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| Denominator                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| Denominator<br>$A(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2}$ Order of Denominator                                                        | + $a_3 s^{n-3}$ + + $a_n$<br>OK Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| Denominator<br>$A(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2}$ Order of Denominator (A(s)) Please enter the coefficients of                | + $a_3 s^{n-3}$ + + $a_n$<br>OK Clear<br>the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| Denominator<br>$A(s) = a_0 s^n + a_1 s^{n-1} + a_2 s^{n-2}$<br>Order of Denominator<br><b>A(s)</b> Please enter the coefficients of     | + $a_3 s^{n-3}$ + + $a_n$<br>OK Clear<br>the polynomials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAVE              |

| X-Axis General System z-domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Transfer Function in z-Domain<br>$G_p(z) = \frac{B(z)}{A(z)} = \frac{b_0 z^m + b_1 z^{m-1} + a_0 z^n + a_1 z^{n-1} + a_0 z^n + a_1 z^{n-1} + a_0 z^n + a_1 z^{n-1} + a_0 z^n + $ | $\frac{b_2 z^{m-2} + b_3 z^{m-3} + \dots + b_m}{a_2 z^{n-2} + a_3 z^{n-3} + \dots + a_n}$ |
| Numerator<br>$B(z) = b_0 z^m + b_1 z^{m-1} + b_2 z^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $a^{n-2} + b_3 z^{m-3} + \dots + b_m$                                                     |
| Order of Numerator<br>B(Z) Please enter the coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OK Clear<br>ts of the polynomials                                                         |
| Denominator<br>$A(z) = a_0 z^n + a_1 z^{n-1} + a_2 z'$<br>Order of Denominator<br><b>A(Z)</b> Please enter the coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a^{n-2} + a_3 z^{n-3} + \dots + a_n$<br>OK Clear<br>ts of the polynomials                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |



## **<u>1.5.6 Controller Configuration</u>**

There are a significant number of control laws, which can be implemented in CNC systems. Typically, any axis control law has two components: the feedforward part which processed the reference position commands, and the feedback part that shapes the measured states such as position, velocity and acceleration to stabilize the closed loop dynamics. The below figure is the axis control law in a standard form.



 $D_T(Z)$  and  $D_s(Z)$  are the matrices corresponding to the feedforward and feedback transfer functions respectively, in the discrete time domain.  $X_r(k)$  is the reference axis command state vector and  $X_m(k)$  is the axis measurement state vector.

Virtual CNC has a number of user reconfigurable control law, which have all been experimentally proven on the open CNC system. The conventional control laws include: Adaptive Sliding Mode Control (**ASMC**), Lead-Lag Control (**LLC**), Digital Position P-Analog Velocity PI control (**P-PI**), Digital Position P Control (**P**), Digital Position PD Control (**PD**), Digital Position PID Control (**PID**), Digital Pole Placement Control (**PPC**), Generalized Predictive Control (**GPC**) and Feed Forward and Feedback Control (**FFFB**).



Click the **Controller** icon in the Axis Servo Drive module, and when the **Controller** icon is highlighting, you can select different types of controllers by clicking the pop-up menu.



Using the Digital Position PID Control (**PID**) as an example, by selecting **PID** option and clicking **Settings** button, you can set up the **PID** controller parameters  $K_{p}$ ,  $K_{i}$  and  $K_{d}$ .

| ontroller Parame | ters                                                         | Fuzzy Tuner               |
|------------------|--------------------------------------------------------------|---------------------------|
| Axis             | X-Axis                                                       | Setup Menu Decision Table |
| eed Drive        | LINEAR                                                       |                           |
| Кр               | [V/mm]                                                       |                           |
| Ki               | [V/mms]                                                      |                           |
|                  | D.C.                                                         |                           |
| Kd               | [Vs/mm]<br>ction Compensation (FFC)<br>sition PID Controller | !                         |



### **<u>1.5.6 Disturbance Configuration</u>**

Click the **Disturbance** icon in the Axis Servo Drive module, and when the **Disturbance** icon is highlighting, you can choose one type of the three options of disturbance to the feed drive. The three options are **Constant External Disturbance**, **From File** and **Disturbance Signal Generator**.



If you select **Constant External Disturbance** option, you should define a value (Unit: [N]) of the constant external disturbance.

If you select **From File** Option, you should load a file after clicking the Browse button.



If you select **Disturbance Signal Generator** option, after clicking the Settings button you can open the interface below. Then you can define the disturbance signal.



![](_page_55_Picture_0.jpeg)

### **<u>1.5.7 Feedback Measurement Configuration</u>**

Click the **Feedback Measurement** icon in the Axis Servo Drive module to open the interface of **Feedback Measurement**. Then choose one type of the three options of feedback measurement to the feed drive. The three options are: **position, velocity and acceleration.** 

| Current Axis               | X-Axis   |                             |
|----------------------------|----------|-----------------------------|
| osition Feedback Measure   | ment     |                             |
| Linear                     | ¥        |                             |
| Position Resolution        |          | [mm/count]                  |
| Measurement Noise Variance |          | [mm^2]                      |
| Velocity Resolution        |          | [(mm/s)count]<br>[(mm/s)^2] |
| cceleration Feedback Meas  | surement |                             |
| Linear                     | ×        |                             |
| Acceleration Resolution    |          | [(mm/s^2)/count]            |
| Measurement Noise Variance |          | [(mm/s^2)^2]                |

![](_page_56_Picture_0.jpeg)

## **<u>1.6 Simulation Configuration</u>**

Now you have finished all configurations. In the **Simulation** Module, you will see the simulation results by running simulation. First, you should define the **output resolution reduction ratio** and **specify part tolerance**.

| Virtual CNC                                                                                                                                                                                                                                                        |                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Help                                                                                                                                                                                                                                                          | ۲<br>۲                                                                                                                                                            |
| Axis<br>Configuration Toolpath Files Generation Axis Ser                                                                                                                                                                                                           | vo Control                                                                                                                                                        |
| - Simulation and Results<br>Select Ax(es) to Plot-<br>X-Axis Y-Axis Z-Axis A-Axis B-Axis C-Axis Select All Axes                                                                                                                                                    | > Run Simulation                                                                                                                                                  |
| Position<br>Velocity<br>Velocity<br>Macceleration<br>Jerk<br>Reference<br>Trajectory<br>Controller<br>Trajectory<br>Motor Current<br>Motor Current<br>Control Signal<br>Motor Torque/Force<br>Control Signal<br>Control Signal<br>Control Signal<br>Control Signal | Output Resolution Reduction Ratio (Ns) 1 Specified Part Tolerance 0.02 [mm] Advanced Analysis Frequency Response Toolbox Axis Tracking Toolbox Contouring Toolbox |
| Click re corresponding por                                                                                                                                                                                                                                         | Manufacturing Automation Laboratory, UBC                                                                                                                          |

To proceed to the Simulation Summary, click the **Run Simulation** button and open the interface Simulation Summary, which shows a summary of the machine setup including the axis configuration, tool path file, trajectory generation and feed drive system.

Click the **Continue** button and the system will start the simulation and show the simulation results.

![](_page_57_Picture_0.jpeg)

| 🕖 Virtual CNC         |                          |                                                  |                                          |
|-----------------------|--------------------------|--------------------------------------------------|------------------------------------------|
| File Help             |                          |                                                  |                                          |
| Axis<br>Configuration | Toolpath Files           | s Trajectory<br>Generation Axis Serv             |                                          |
| Axis                  | 5-Axis                   |                                                  | Continue                                 |
| Toolpath Fi           | e C:\VCNC\Examples\Co    | ommandFileExample\5axis_sim.dat                  |                                          |
| Trajectory (          | Generation               |                                                  |                                          |
| Kinematics            | Profile Trapezoio        | dal Velocity                                     |                                          |
| Servo-Feed            | Drive System             |                                                  |                                          |
| Sampling T            | ime [s] 0.0              | 001                                              |                                          |
|                       | Feed Drive               | Controller                                       | Disturbance                              |
| X-Axis                | Rigid Body Leadscrew Dri | ve Pole Placement Controller                     | Constant Disturbance                     |
| Y-Axis                | General System in S-Don  | nain Proportional Integral Derivative Controller | Constant Disturbance                     |
| Z-Axis                | General System in S-Dom  | nain Proportional Integral Derivative Controller | Constant Disturbance                     |
| A Axis                | Rigid Body Rotary Motors | Pole Placement Controller                        | None                                     |
| B Axis                | Rigid Body Rotary Motors | Pole Placement Controller                        | None                                     |
|                       |                          | e                                                | Manufacturing Automation Laboratory, UBC |

After the simulation you can select the axes to check the simulation

results and click the icons in the **Simulation and Results** Toolbox to get the corresponding plot.

You also can use the **Advanced Analysis Toolbox** to gain the detail information about the **Frequency Response**, **Axis Tracking** and **Contouring error**.

![](_page_58_Picture_0.jpeg)

### **1.6.1 Virtual CNC Real Time Implementation Quick Start Guide**

A sample application of the real time implementation will be shown below for a 3 axis Fadal machining center.

#### **Step 1: Loading a Model**

Open VCNC and load the example file located in Virtual CNC Examples/Ex01\_Kinematic Configurations\Ex01A\_3 Axis Rigid Drive Example.vcnc. This is done by going to **File->Open** in VCNC.

#### **Step 2: Simulating the Model**

The settings within VCNC can be changed, however the default setting should work for the example. After making any changes to the system parameters the **Run Simulation** button can be pressed, located in the **Simulation** tab page. After clicking the **Run Simulate** button check the **Real Time System** checkbox, as shown below. Then click **Continue** as you regularly would for running a simulation.

![](_page_58_Picture_7.jpeg)

![](_page_59_Picture_0.jpeg)

**Note:** If the system is to be tested on a real machine the computer running VCNC must have a dSPACE DS1103 device connected to it. This system will build the controllers and trajectory into a C-coded file

that is automatically loaded to the dSPACE board. The dSPACE board needs to be connected to the machine using the connection mapping shown in the table below:

| DS1103<br>Connector           | Machine Connection                 | Description                       |
|-------------------------------|------------------------------------|-----------------------------------|
| DACH1                         | X-AXIS CONTROL (-10 to +10 volts)  | Voltage to control axis           |
| DACH2                         | Y-AXIS CONTROL (-10 to +10 volts)  | Voltage to control axis           |
| DACH3                         | Z-AXIS CONTROL (-10 to +10 volts)  | Voltage to control axis           |
| DACH4                         | A-AXIS CONTROL (-10 to +10 volts)  | Voltage to control axis           |
| DACH5                         | B-AXIS CONTROL (-10 to +10 volts)  | Voltage to control axis           |
| DACH6                         | C-AXIS CONTROL (-10 to +10 volts)  | Voltage to control axis           |
| DACH7                         | Spindle Control (-10 to +10 volts) | Voltage to control spindle<br>RPM |
| Inc1                          | X-AXIS FEEDBACK                    | Encoder Feedback                  |
| Inc2                          | Y-AXIS FEEDBACK                    | Encoder Feedback                  |
| Inc3                          | Z-AXIS FEEDBACK                    | Encoder Feedback                  |
| Inc4                          | A-AXIS FEEDBACK                    | Encoder Feedback                  |
| Inc5                          | B-AXIS FEEDBACK                    | Encoder Feedback                  |
| Inc6                          | C-AXIS FEEDBACK                    | Encoder Feedback                  |
| Digital I/O PIN 1<br>(Input)  | Spindle Feedback                   | 5Volts = error, $0$ V = okay      |
| Digital I/O PIN 9<br>(Output) | Spindle on/off                     | 5Volts = on, $0$ Volts = off      |

#### **Real Time dSpace Connector Map**

![](_page_60_Picture_0.jpeg)

### **Step 3: Configuring the Real Time Build Information**

Once the simulation has been run with the **Real Time System** checkbox clicked, the **Run On Machine** button can be pressed to start the process of preparing the code for real time testing.

![](_page_60_Figure_3.jpeg)

#### **Step 4: Configuring Build Parameters**

First the **Configure** button in the **RT\_Config** window needs to be pressed to configure the real time build parameters. This will open the **Configuration Parameters** window. The default settings should generally be correct and the **OK** button can be pressed to confirm and return to the **RT\_Config** window.

![](_page_61_Picture_0.jpeg)

| Please 'Configure' and then '8                        | luik! to run on machine                                                                                     | 2.                                                        |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1. Configure<br>2 Build<br>(3.) Open Run Time Control | ADC and DAC<br>CH1 = X-axis<br>CH2 = Y-axis<br>CH3 = Z-axis<br>CH4 = A-axis<br>CH5 = B-axis<br>CH5 = B-axis | I/O Port<br>IN: Pin 1 = Spd Fb<br>OUT: Pin 9 = Spd On/Off |

| 裪 Configuration Parame                                                                                                                                                                                                                                                                                                                                                         | ters: RT_Copy/RT_Configuration (Active) |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| Select  Select  Select  Select  Data Import/Export  Data Import/Export  Data Select  Sample Time  Data Validay  Type Conversion  Connectivity  Compatibility  Model Referencing  Saving  Hardware Implementation  Model Referencing  Real-Time Workshop  Coatments  Symbols  Custom Code  Debug  Interface  RTI simulation options  RTI general build op  RTI variable descrip |                                         |      |
|                                                                                                                                                                                                                                                                                                                                                                                | QK Çancel Help Ass                      | ły 🗌 |

### **Step 5: Building the Real Time Implementation**

The **Build** button in the **RT\_Config** window can then be pressed. The system will then build, compile, and load the C code onto the dSPACE board. Once it is complete it will open a **Spindle\_Configuration** dialog window.

![](_page_62_Picture_0.jpeg)

| VCNC to dSpace Mapping           ADC and DAC         I/O Port           CH1 = X-axis         Bt: Pin 1 = Spd Fb           CH2 = Y-axis         OUT: Pin 9 = Spd On/Off           CH3 = Z-axis         CH4 = A-axis           CH4 = A-axis         CH5 = B-axis |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH6 = C-axis                                                                                                                                                                                                                                                   |

#### **Step 6: Spindle Control Configuration**

The spindle RPM is set by the dSPACE outputting a voltage. The relationship between the RPM and voltage is assumed to be linear. Therefore, the minimum and maximum RPM range of the machine is required as well as the minimum and maximum voltage that the machine is expecting for the Spindle RPM control. Linear interpolation is then automatically used to determine the required output voltage. If there is no spindle feedback available the **Bypass Spindle Speed Feedback** checkbox can be checked. This will disable the feedback and the controller will assume the spindle is operating at the requested RPM. The **Set** button can then be pressed and the real time GUI window will open (Labeled as VCNC\_RT\_Interface).

![](_page_63_Picture_0.jpeg)

| Spindle_configu  | ra 🔳 🗖 🔀        |
|------------------|-----------------|
| Spindle Settings |                 |
| Min RPM<br>0     | Max RPM<br>5000 |
| Min Voltage      | Max Voltage     |
| Bypass Spindle   | Speed Feedback  |
|                  | Set             |

# **Step 7: Using the Real Time Interface to Control the Machine**

The real time GUI is used to control the machine using the designed controller and trajectory. The table included below explains the operation of each button.

![](_page_63_Figure_4.jpeg)

![](_page_64_Picture_0.jpeg)

# **Real Time GUI Description**

| Graphical User Interface<br>Function Name                           | Function Description                                                                                                                                                            |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Machine Control - Start                                             | Starts the controllers running on the machine                                                                                                                                   |
| Machine Control - Stop                                              | Stops the controllers therefore stopping the machine via software                                                                                                               |
| Trajectory Control Start<br>Trajectory                              | Start or Resume the programmed trajectory                                                                                                                                       |
| Trajectory Control Pause<br>Trajectory                              | Pause the programmed trajectory at its current<br>position<br>WARNING: This will stop the machine in its<br>current position suddenly, causing a large<br>deceleration and jerk |
| Trajectory Control Stop<br>Trajectory                               | This stops the trajectory, similar to Pause,<br>however it resets everything so that it will start<br>from the beginning next time                                              |
| Trajectory Control Feed Rate<br>Override (below Stop<br>Trajectory) | Allows the trajectory speed to be adjusted from 0 to 200% of original trajectory speed (100% is original speed)                                                                 |
| Trajectory Control Tracking<br>Error                                | Safety to limit Tracking Error, if individual axis exceeds limit the output voltage is shut off                                                                                 |
| Save Results                                                        | Save data collected during Trajectory execution (output formats are csv and mat)                                                                                                |
| Spindle Control Spindle Speed<br>Adjust(RPM)                        | If this option is selected it adds the entered<br>spindle RPM to the originally commanded RPM<br>(Can be negative)                                                              |
| Spindle Control Spindle Speed<br>Adjust(%)                          | If this option is selected it scales the originally commanded RPM by the entered value (0 to 200%)                                                                              |
| Spindle Control CMD RPM                                             | Displays the currently commanded RPM                                                                                                                                            |
| Spindle Control CMD Volt                                            | Displays the voltage currently sent to the machine for RPM control                                                                                                              |

![](_page_65_Picture_0.jpeg)

| Axis Control Toggle Between            | Allows the user to switch between the axis (i.e. X or A, Y or B, Z or C)                                                   |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Axis Control CMD Voltage               | Displays the current voltage being sent to the drive amp                                                                   |
| Axis Control Saturation Low            | Sets minimum output voltage that can be sent to drive amp                                                                  |
| Axis Control Saturation High           | Sets maximum output voltage that can be sent to drive amp                                                                  |
| Axis Control Maximum<br>Movement (mm)  | Sets absolute maximum movement that that axis<br>can move from starting position, when exceeded<br>output is set to 0 volt |
| Axis Control Invert Gain               | Set the axis feedback gain to be inverted<br>WARNING: Do not switch during operation,<br>unstable behavior will occur!     |
| Axis Control Plot Axis                 | Shows a detailed plot of that particular axis                                                                              |
| Axis Control Encoder<br>Gain[mm/count] | Displays the current encoder gain [mm/count],<br>can also be used to set a new encoder gain                                |
| Axis Control Jog axis                  | Moves the axis using the controller amount specified by the Increment box                                                  |
| Axis Control Increment[mm]             | Sets the jog increment (unit is mm)                                                                                        |

![](_page_66_Picture_0.jpeg)

## **1.6.3 Advanced Analysis Toolbox**

The advanced analysis function module is used to check the performance of the controller.

It includes three options: **Frequency Response Toolbox**, **Axis Tracking Toolbox** and **Contouring Toolbox**.

| Virtual CNC                                                                         |                                                   |
|-------------------------------------------------------------------------------------|---------------------------------------------------|
| File Help                                                                           | 2                                                 |
| Axis<br>Configuration Toolpath Files Files Configuration Axis Se                    |                                                   |
| Select Ax(es) to Plot<br>X-Axis Y-Axis Z-Axis A-Axis B-Axis C-Axis Select All Axes  | > Run Simulation                                  |
| Position External Disturbances Toolpath                                             | Output Resolution Reduction Ratio (Ns)            |
| Acceleration Disturbance<br>Jerk Actual Tracking Error                              | Specified Part Tolerance 0.02 [mm]                |
| Trajectory Controller Peed Drive Violation Spot<br>Motor Current Motor Torque/Force | - Advanced Analysis<br>Frequency Response Toolbox |
| Control Signal Friction Torque/Force                                                | Axis Tracking Toolbox Contouring Toolbox          |
|                                                                                     | © Manufacturing Automation Laboratory, UBC        |

## • Frequency Response Toolbox

In the frequency response analysis module you can check the results of Bode Diagram, Nyquist Plot, Phase and Gain Margin etc. of each axis.

![](_page_67_Picture_0.jpeg)

| xis Information       |                                     |                                                   |
|-----------------------|-------------------------------------|---------------------------------------------------|
| Corresponding Axis    | X-Axis 💌                            |                                                   |
| Drive Model           | General System S-domain             |                                                   |
| Axis Control          | Proportional Integral Derivative Co | ntroller                                          |
| Sampling Time (Ts)    | 0.001 [s]                           |                                                   |
| nalysis               |                                     |                                                   |
| Response Analy        | Sis Feed drive system/ Plant mo     | del                                               |
| Reference<br>Commands | Axis Motion<br>Controller           | ed Drive Actual<br>System Position                |
| Reference<br>Commands | Axis Motion<br>Controller           | ed Drive<br>System<br>[rad/s]                     |
| Reference<br>Commands | Axis Motion<br>Controller           | ed Drive<br>System Position<br>[rad/s]            |
| Reference<br>Commands | Axis Motion<br>Controller           | ed Drive Actual<br>Position<br>[rad/s]<br>[rad/s] |

## • Axis Tracking Toolbox

The Axis Tracking Analysis module analyzes the tracking performance for four types of inputs: **Step Input, Ramp Input, Sine Wave Input,** and **Back and Forth Input**.

![](_page_68_Picture_0.jpeg)

In the right side of the interface, you can configure the input signal by defining the parameters.

You can choose a **Linear Model** or **Non-linear Model** as the type of the time domain response as well.

After configuration, by clicking **Run Analysis** button you can see the analysis result.

| Corresponding Axis X-Axis International Axis Control Controller Sampling Time (Ts) 0.001 [s] End Sampling Time (Ts) 0.001 [s] International Axis Control Pole Placement Controller [s] International Axis Control |                             |                                               |               | Step Input       |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|---------------|------------------|-----------|
| Drive Model General System Z-domain<br>Axis Control Pole Placement Controller<br>Sampling Time (Ts) 0.001 [s]<br>Hease select the input for the axis tracking analysis<br>Time Domain Response Definition of the axis tracking analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Corresponding Axis          | X-Axis                                        |               |                  |           |
| Axis Control<br>Sampling Time (Ts) 0.001<br>lease select the input for the axis tracking analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drive Model                 | General System Z-domain                       |               | 4 E(t)           | 2.0       |
| Sampling Time (Ts) 0.001 [s]<br>Hease select the input for the axis tracking analysis<br>Time Domain Response December 2010 (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Axis Control                | Pole Placement Controller                     |               | <b>A</b> (10)    | +         |
| ease select the input for the axis tracking analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampling Time (Ts)          | 0.001                                         | [s]           | Magnitude        |           |
| ease select the input for the axis tracking analysis<br>Time Domain Response Decision Step Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                               |               | 1.0              | ļ         |
| Image: Step Time     Image: Step Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | anna anlast the input frai  | he swis tracking applying                     |               |                  |           |
| Time Domain Response     Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ease select the input for t |                                               |               |                  | Timo (cor |
| Time Domain Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | f(t)                                          | $\rightarrow$ | 1.0              | Time [se  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | f(t)<br>f(t) sine wave<br>f(t) sine wave<br>t | ₩             | 1.0<br>Step Time | Time [se  |
| Linear Model     Non-linear Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time Domain Response-       | f(t)<br>f(t) sine wave<br>f(t) sine wave<br>t | ₹             | 1.0<br>Step Time | Time [sei |

## • Contouring Toolbox

The Contouring analysis includes four types of profiles: **Diamond**, **Circle**, **Triangular** and **Cornered Angle**.

In the right side of the interface, you can configure the profile by defining the parameters.

You can choose a **Linear Model** or **Non-linear Model** as the type of the time domain response as well.

Before running, you should check which results are expected and displayed.

![](_page_69_Picture_0.jpeg)

After configuration, by clicking **Run Analysis** button you can check the analysis results based on the reference profile.

| ' Axis Information—              |                                             | Diamond Profile Settings                                  |
|----------------------------------|---------------------------------------------|-----------------------------------------------------------|
| Axis                             | X-Axis                                      | , Y                                                       |
| Axis Drive Model                 | General System S-domain                     | Magnitude P3                                              |
| Axis Controller                  | Proportional Integral Derivative Controller | 50.0<br>[mm]                                              |
| Axis                             | Y-Axis                                      |                                                           |
| Axis Drive Model                 | General System S-domain                     | P <sub>4</sub> P <sub>2</sub>                             |
| Axis Controller                  | Proportional Integral Derivative Controller | 2                                                         |
| Interpolation Type               | Linear/ Circular Interpolation              |                                                           |
| ofile Selection                  |                                             | Tool Position Information S (P1)                          |
| LALY                             |                                             | 1 P1(x,y) = [ 0.00, 0.00]                                 |
|                                  |                                             | P2(x,y) = [ 35.36, 35.36]                                 |
| Time Domain Respons              |                                             | P3(x,y) = [ 0.00, 70,71]<br>P4(x,y) = [ 25 26 25 26]<br>S |
| <ul> <li>Linear Model</li> </ul> | Non-Linear Model                            |                                                           |
| esults                           |                                             | Command Feedrate: 6000.0 [mm/min]                         |
| Tool path                        | Control Signal Contour Error                |                                                           |
|                                  |                                             |                                                           |

![](_page_70_Picture_0.jpeg)

#### **Overview of how VCNC Real Time works**

![](_page_70_Figure_2.jpeg)

![](_page_71_Picture_0.jpeg)

## **<u>1.7 Export Results</u>**

Export Results function under **File** menu can be used to export the useful simulated toolpath and error data by users.

After simulation you can export the simulated results including the tracking error and contour error by clicking the **File** menu and selecting **Export** to open the interface of exporting results.

| Virtual CNC                                               |                                                             |
|-----------------------------------------------------------|-------------------------------------------------------------|
| File Help                                                 | ¥د<br>ا                                                     |
| New Ctrl+N                                                |                                                             |
| Open Ctrl+O                                               |                                                             |
| Export Ctrl+E                                             |                                                             |
| Save Ctrl+S Generation                                    | Simolation                                                  |
| Exit Exit                                                 |                                                             |
|                                                           |                                                             |
| -Simulation and Results                                   |                                                             |
| Select Ax(es) to Plot                                     |                                                             |
| X-Axis Y-Axis Z-Axis A-Axis B-Axis C-Axis Select All Axes | > Run Simulation                                            |
|                                                           |                                                             |
| Summary                                                   |                                                             |
| External Disturbances Toolpath                            |                                                             |
| Velocity                                                  |                                                             |
| Acceleration Disturbance                                  | Specified Part Tolerance                                    |
| Jerk Actual M Tracking Error                              | 0 [mm]                                                      |
| Reference Trajectory                                      |                                                             |
| Trajectory Feed Drive Feed Drive                          | Advanced Analysis                                           |
| Motor Current Motor Torque/Force                          | Frequency Response Toolbox                                  |
|                                                           |                                                             |
| Control Signal 🎽 Friction Torque/Force                    | Axis Tracking Toolbox                                       |
|                                                           | Contouring Toolbox                                          |
| Click 2 to get the corresponding                          | plot.                                                       |
| Anaufacturing Automation Laborators UPC                   |                                                             |
|                                                           | <ul> <li>Manuacturing Automation Laboratory, OBC</li> </ul> |

You can select different types of data to export by clicking the pop-up menu. Select the data first, which includes **Tracking Error, Contour Error, Reference Trajectory, Simulated Response, Controller** and **Toolpath**. The data file can be an Excel (.xls) file or MATLAB (.mat) file.


Then click the **Browse** button to choose a file path as the directory and enter the file name in the text box.

You can save the results to the directory you have defined before by clicking the **Save** button.

| GExportResult            |         |           |
|--------------------------|---------|-----------|
| Select data to           | export: |           |
| None                     |         | •         |
| Excel (.xls) MATLAB (.ma | it)     |           |
| File path                |         | Browse    |
|                          | Sa      | IVe Close |

| GEx | portResult                                           |
|-----|------------------------------------------------------|
|     |                                                      |
|     | Select data to export:                               |
|     | None                                                 |
|     | None                                                 |
|     | Tracking Error                                       |
|     | Contour Error                                        |
|     | Reference Trajectory (Pos, Vel, Acc, Jerk)           |
|     | Simulated Response (Pos, Vel, Acc, ControllerSignal) |
|     | Controller                                           |
|     | Toolpath                                             |
|     | Save Close                                           |
|     |                                                      |



## **<u>1.8 Support</u>**

## **Contacting Manufacturing Automation Laboratories Inc.**

Manufacturing Automation Laboratories, Inc.

2829 Highbury St.

Vancouver, BC, Canada

V6R 3T7

Tel: (604) 827-4370

Fax: (604) 228-9269

Email: Sales: sales@malinc.com

Technical Support:<a href="mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:support@mailto:suppor

Web: <u>http://www.malinc.com/</u>

© Manufacturing Automation Laboratories Inc.

