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ABSTRACT
Variety of helical end mill geometry is used in industry. Helical

cylindrical, helical ball, taper helical ball, bull nosed and special
purpose end mills are widely used in aerospace, automotive and die
machining industry. While the geometry of each cutter may be
different, the mechanics and dynamics of the milling process at each
cutting edge point are common. This paper presents a generalized
mathematical model of most helical end mills used in industry. The
end mill geometry is modeled by helical flutes wrapped around a
parametric envelope. The coordinates of a cutting edge point along the
parametric helical flute are mathematically expressed. The chip
thickness at each cutting point is evaluated by using the true
kinematics of milling including the structural vibrations of both cutter
and workpiece. By integrating the process along each cutting edge,
which is in contact with the workpiece, the cutting forces, vibrations,
dimensional surface finish and chatter stability lobes for an arbitrary
end mill can be predicted. The predicted and measured cutting forces,
surface roughness and stability lobes for ball, helical tapered ball, and
bull nosed end mills are provided to illustrate the viability of the
proposed generalized end mill analysis.

NOMENCLATURE:
P : A cutting point on cutting edge
X,Y,Z : Global stationary coordinate sys. as shown in Figure 3
a : Axial depth of cut
dz : Differential height of the chip segment
h : Valid cutting edge height from tool tip

),,( zh φψ : Chip thickness at a cutting point specified by ),,( zφψ
i(z) : Helix angle
lead : Lead value for constant lead
n : Spindle speed
r(z) : Radial coordinate of a cutting edge point
α, β : Parametric angles of the end mill
φ : Rotation angle of cutting edge

)(zψ : Cutting edge position angle at level z on the XY plane

Fx , Fy , Fz : Force components in X, Y and Z directions
D , R , Rr , Rz : Parametric radial dimensions of the end mill
Mr , Nr  : Radial offsets of the end mill profile for points M and N
Mz , Nz : Axial offsets of the end mill profile for points M and N
Nf : Number of flutes
Ktc , Krc , Kac : Cutting force coefficients in tangential, radial and axial

directions
Kte , Kre , Kae : Edge force coefficients in tangential, radial and axial

directions
dFr , dFt , dFa: Differential tangential, radial and axial forces

)(zr
r : Vector from tool center to cutting edge

stj : Feed per tooth for tooth j 
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xj , yj , zj , : Coordinates of point P which is in cutting
)(zjφ : Total angular rotation of flute j at level z on the XY pl.

pjφ : Pitch angle of flute j

[T] : Transformation matrix for the cutting forces

1. INTRODUCTION

Variety of helical end mill geometry is used in milling operations.
Simple cylindrical helical end mills are used in peripheral milling of
prismatic parts.  Straight and helical ball end mills are widely used in
machining sculptured die and aerospace part surfaces, and bull nosed
cutters produce periphery of parts meeting with the bottom floor with
fillets.  Tapered helical end mills are used in five axis machining of jet
engine compressors, and form cutters are used to open complex
profiles such as turbine blade carrier rings. A classical approach in the
literature has been to develop milling mechanics models for each
cutter shape, therefore, mechanics and dynamics models developed
individually for face (Fu et al., 1984), cylindrical (Sutherland et al.
1986, Bayoumi et al. 1994; Budak et al.,1996; Spiewak , 1994), ball
end (Lazoglu et al., 1997; Altintas et al., 1998; Yucesan et al., 1996)
and tapered ball end mills (Ramaraj et al., 1994) have been reported in
the literature. Ehmann et al. (1997) summarized the overview of past
research in mechanics and dynamics of milling, which were mainly
specific to standard end and face milling cutters. A generalized



mechanics and dynamics model that can be used to analyze any cutter
geometry is therefore required in order to analyze variety of end mill
shapes used in manufacturing industry.

The cutter geometry has two geometric components. The
envelope or outer geometry of the cutter is used in generating NC tool
paths on CAD/CAM systems. Moreover, the envelope of the cutter is
used in identifying the intersection of cutter and workpiece geometry,
which is required in simulating the material removal process and in
dynamically updating the blank geometry for graphical NC tool path
verification (Leu et al., 1997; Gu et al., 1997; Spence et al., 1994).
The geometric model must also include the cutting edge geometry
along the flutes for analyzing the mechanics and dynamics of the
milling process. The prediction of the cutting forces and vibrations
require the coordinates, as well as rake, helix, clearance angles of the
cutting edge point on the flute (Budak et al., 1996).

A generalized model of end mill geometry and cutting flutes is
introduced in this paper. The envelope of the geometry is defined
similar to the parametric representation used by APT (Childs, 1973)
and CAD/CAM software systems. The formulation of cutting edge
coordinates is presented. It is shown that a vast variety of helical end
mill geometry can be designed using the proposed geometric model of
generalized cutters. The modeled cutting edge can be broken into
small increments, where the cutting constant may be different at each
location. As an example, helical ball, tapered helical ball and bull nose
cutters are provided. It is experimentally proven that the model can be
used in predicting the cutting forces, vibrations, dimensional surface
finish, as well as chatter stability lobes for any cutter geometry.

2. GENERALIZED GEOMETRIC MODEL OF MILLING
CUTTERS

APT and CAD/CAM systems define the envelope of milling
cutters by seven geometric parameters (Childs, 1973):

hRRRD zr  ,  ,  ,  ,  ,  ,CUTTER/ βα
where the cutter parameters D , R , rR , zR , α , β  and h  are shown

in Figure 1. The generalized parametric statement can define a variety
of face and helical end mill shapes used in industry as shown in Figure
2. These seven geometric parameters are independent of each other,
but with geometric constrains in order to create mathematically
realizable shapes. A helical cutting edge is wrapped around the end
mill envelope as shown in Figure 3. The mechanics of cutting require
the identification of coordinates, the local cutting edge geometry, chip
load, and the three differential cutting forces (dFa, dFr, dFt) at cutting
points (i.e. P in Figure 3) along the cutting edge. Point P has elevation
z, radial distance r(z) on XY plane, axial immersion angle )(zκ  and

radial lag angle )(zψ . The axial immersion angle is defined as the
angle between the cutter axis and normal of helical cutting edge at
point P (Figure 3). The radial lag angle is the angle between the line,
which connects the point P to the cutter tip on the XY plane and the
cutting edge tangent at the tip of the cutter. The coordinates of P are
defined by vector )(zr

r

 in cylindrical coordinates.
The periphery of the milling cutter is divided into three zones

(Figure 1):
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Figure 1. General tool geometry.
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Figure 2. End mill shapes.

where )(zr is the radius of the cutter at elevation z , u is the distance
between the cutter tip and the point at which the NS  line intersects the
XY plane.

An arc with the center at point C, a radial offset Rr and arc radius
of R, is tangent to or intersects the taper lines OL and LS at points M
and N, respectively (Figure 1). The radial and axial offsets of points M
and N from the cutter axis and tip are found, respectively, as:
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Figure 3. Geometric model of the general end mill.
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In Figure 1, the lines OM and SN are not necessarily tangent to
the corner arc at the points M and N.  If the lines are tangent to the arc,
outer surface of the cutter will be continuous through out the three
segments, otherwise the surface will be discontinuous so as the helix
angle.

The radial offset at elevation z and the axial immersion angle in
three zones are (Figure 1, Figure 3),
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Figure 4. Helical cutting edges on the tool.

2.1 Generalized Geometric Model of the Helical Cutting
Edges

Helical flutes can be wrapped around the cutters as shown in
Figure 4. A vector drawn from cutter tip (O) to any point (P) on a
helical flute can be expressed as (Figure 3),

( ) k )(j cosi  sin)(k j i r
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where jφ  is the radial immersion angle of point P on flute number j.

The radial immersion angle ( jφ ) varies as a function of rotation angle,

flute position, and the local helix angle at point P. The first flute (j=1)
is considered to be a reference edge, and its rotation angle at the
elevation z=0 is  φ . The immersion angle for flute j at axial location z
is expressed as:
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where pjφ  is the pitch angle between the preceding flutes. It should be

noted that this general formulation allows variable pitch cutters as
well. The radial lag angle )(zψ  due to the local helix angle i.  Since
the cutter diameter may be different along the axis, the helix and thus
lag angles vary along the flute as well, and they are evaluated in the
following subsection.

An infinitesimal length )(dS of a helical cutting edge segment
can be given as follows,
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The chip thickness changes with both radial )( jφ  and axial

immersion )(κ  as the following,

κφφ sinsin)( jtjj sh = (8)

where tjs is the feed per tooth for tooth j. Note that the effective feed

for every tooth may be different when variable pitch cutters are used.
The lag angle )(zψ  has a different expression for each zone along the
flute, which is wrapped around general cutter geometry.

Zone OM  ( )zMz ≤ : The helix angle is assumed to be constant at

this usually small cone part, i.e. oizi =)( . Ramaraj (1994) gives the

differential equation and its solution for a helical flute spiraled on a
cone as,
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Since the spiral radius is zero at the tool tip, the lag angle
condition becomes −∞=)0(ψ . Instead, the simulations were started

with a small radial offset from the tip, i.e. 20/rs Mr = which gives a

starting lag angle of αψ cos/tanln1 oss ir= . The variation of lag angle

along the helical flute is evaluated from Eq. (9),
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If the cone zone (OM) does not exist (i.e. bull nose and ball end

cutters), α , s1ψ  and e1ψ  will be zero.

Arc Zone MN ( )zz NzM ≤< : Due to changing radial offset from

the cutter axis, the helix angle varies along the flute for constant lead
cutters as,
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Since the arc is not a full quarter due to tangency to the cone,
there is a discontinuity on the helix angle at point M. This leads to the
following lag angle expression,
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where e1ψ  and asψ  are the final lag angles at point M formed by the

cone and arc, respectively. The lag angle ( asψ ) formed by the arc at

point M is,
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The final lag angle at the end point N of the arc is:
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if the arc is missing from the cutter geometry 0=R  → 0=asψ ,

eae 1ψψ = .

Taper Zone NS ( )zNz < : The taper zone of the cutters is ground

either with a constant lead or constant helix. The constant lead, which
leads to variable helix angle along the flute, is preferred by the cutter
grinders in order to save from the material during re-grinding
operation. However, cutting mechanics are more uniform with
constant helix cutters, which require varying lead. Both methods are
modeled here.

Constant helix: The helix angle is constant, and the lag angle
changes along the flute:
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where aeψ  and s2ψ  are final lag angle at the point N from the arc and

initial lag angle generated by the taper zone (NS) at point N,
respectively. The initial value s2ψ  is,
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Constant Lead: The lead of the helical flute is constant, and the
helix varies along the flute. The nominal helix (

si ) and lead (lead) of

the of the tapered flute is defined at point N,
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which leads to a variable helix expression
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The variation of the lag angle )(zψ  is given by,
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3. MODELING OF CUTTING FORCES

The differential tangential ( tdF ), radial ( rdF ) and axial ( adF )

cutting forces acting on infinitesimal cutting edge segment are given
by (Altintas and Lee, 1998),
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where ),( κφh  is the uncut chip thickness normal to the cutting edge
and varies with the position of the cutting point and cutter rotation.
Subindices (c) and (e) represent shear and edge force components,
respectively. The edge cutting coefficients teK , reK  and aeK  are

constants and related to the cutting edge length dS given in Eq (7). The
shear force coefficients tcK , rcK , acK  are identified either

mechanistically from milling tests conducted at a range of feed rate
(Fu et al., 1984; Yucesan and Altintas 1996) or a set of orthogonal
cutting tests using an oblique transformation method presented by
Budak et al. (1996). db ( κsin/dzdb = ) is the projected length of an
infinitesimal cutting flute in direction along the cutting velocity. The
chip thickness ),( κφh is evaluated using the true kinematics of milling
(Martellotti, 1945) as well as the vibration of both the cutter and
workpiece. The cutter is rotated at a spindle speed and the workpiece
is fed with the given feed using a small discrete time interval. The
positions of cutting points along the flute are evaluated using the
geometric model presented in section 2. The location of the same flute
point on the cut surface is identified using both the rigid body
kinematics as well as structural displacements of cutter and workpiece.
The dynamic chip thickness is evaluated by subtracting the present
coordinate of the cutting point from the previous surface generated by
the preceding tooth. The mathematical model and the procedure to
evaluate dynamic chip load are well explained for the helical
cylindrical and ball end mills in the previous publications
(Montgomery and Altintas, 1991; Altintas and Lee, 1998), and not
repeated here due to similarity of the approaches. Once the chip load is
identified and cutting constants are evaluated for the local edge
geometry, the cutting forces in Cartesian coordinate system can be
evaluated as,
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The total cutting forces for the rotational position φ  can be found
integrating Eq. (23) along the axial depth of cut for all cutting flutes
which are in contact with the workpiece.
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where Nf is the number of flutes on the cutter. 1z  and 2z  are the

contact boundaries of the flute within the cut and can be found from
the geometric model of each zone given in section 2. The cutter is

axially digitized with small disk elements with a uniform differential
height of dz . The differential cutting forces are calculated along the
full contact length for all flutes which are in cut, and digitally summed
to find the total cutting forces )(φxF , )(φyF  and )(φzF at a given

rotation angle dt⋅Ω=φ where )/( sradΩ is the spindle speed and

dt is the differential time interval for digital integration.
The structural dynamics of both cutter and workpiece are

measured at the tool tip, and the modes are identified using
experimental modal analysis technique. The dynamic chip thickness,
cutting forces, vibrations, surface finish, torque and moments
generated by the interaction of cutting forces and structural dynamics
are simulated in the time domain using a technique similar to one
presented for ball end milling by Altintas and Lee (1998). The chatter
stability lobes are predicted both using time domain simulations and
frequency domain analytical chatter stability prediction method
presented previously by Altintas et al. (1995, 1998, 1999). The readers
are referred to the previous literature for the mathematical details of
the time and frequency domain solutions of the dynamic milling
process.

4. SIMULATION AND EXPERIMENTAL RESULTS
More than 300 cutting tests with various cutter geometry and

material were conducted using the generalized method presented here.
A sample of helical and inserted end mills are presented here to
demonstrate the flexibility of the proposed model.

Tapered Helical Ball End Mill: These cutters are mainly used
in five axis milling of jet engine compressors made of Titanium
Ti6Al4V alloys. Because of large axial depth of cuts and poor
machinability of Titanium, the chip loads are small and the cutting
speed is low in order to avoid shank breakage and edge chipping.
Chatter vibrations are also most frequently experienced due to heavy
cuts with slender end mills. The proposed model is applied to the
design and virtual analysis of the tapered cutters for an aircraft jet
engine company. The objective was to optimize the cutting tool
geometry for strength, and identify the chatter stability lobes to avoid
self-excited vibrations during milling compressors and integral bladed
rotors. The cutting constants for Ti6Al4V are identified using
orthogonal to oblique cutting transformation method and given in
(Budak et al., 1996). One of the particular cutter geometry generated
by the proposed geometric model is given in Figure 5. Although the
tests were conducted at various depth of cuts and feeds, two sample
predictions and experimental validations are given in Figure 6. The
tests cover both the ball end and tapered zones. The higher axial depth
of cuts produced severe chatter vibrations on our machining center,
which does not have a spindle as rigid as the five axis machining
centers used in our industrial partner’s shop. Even though the
orthogonal cutting database is used, the predicted and measured
cutting forces are in satisfactory agreement.

Ball End Cutters: Ball end mills are used mostly in die and
mold machining industry. The surface finish, static form errors, chatter
vibrations, and tool life are the main constrains in ball end milling of
dies and molds. The prediction of ball end milling forces and cutting
constants (Yucesan and Altintas, 1996), chatter stability (Altintas et
al., 1999), and surface finish (Altintas and Lee, 1998) were presented
before using specific geometric model of ball end mills. Slot ball end
milling tests and predicted cutting forces are shown in Figure 7. The
cutter material was WC coated with TiAlON, the work material was
GGG70 spheroidal graphite cast iron with 251-283HB hardness, and
the cutting conditions are given in Figure 7.
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Figure 6. Measured and predicted cutting forces for slot cutting. Cutting
conditions: rake angle = 10°, relief angle = 10°, tool type is taper helical
ball end mill, D = 6.0 mm, R = 3.0 mm, Rr = 0 mm, Rz = 3.0 mm, α  =

0°, β  = 4.0°, h = 38.0 mm, lead = 105.0 mm, Nf = 1 flute, carbide
cutter, see reference (Budak et al., 1996) for Ti6Al4V orthogonal cutting
coefficients.
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Figure 7. Measured and predicted cutting forces for slot cutting. Cutting
conditions: rake angle = 10°, relief angle = 0°, tool type is ball end mill,
D = 12.0 mm, R = Rr = 6.0 mm, Rz = 0 mm, α  = 0°, β  = 0°, h = 6.0

mm, Nf = 2 flutes, cutter material was WC coated with TiAlON,
workpiece material GGG70 spheroidal graphite, Cutting coefficients:
Ktc=2172.1, Krc=848.90, Kac=-725.07 N/mm2, Kte=17.29, Kre=7.79,
Kae=-6.63 N/mm.
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Only one insert is used during the cutting test.
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Figure 8. General tool geometry application for inserted end mill. See
reference (Budak et al., 1996) for the cutting coefficients.
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Figure 9. Stability lobes for Bull nose cutter (see Figure 8). Cutting conditions: half immersion down milling, Nf = 2 flutes, feed rate 0.050 mm/tooth. See
Table 1 for the transfer function parameters. Average cutting coefficients for Al-7075: Ktc=1319.41, Krc=788,83, Kac=48.75 N/mm2, Kte=19.65, Kre=26.77,
Kae=2.05 N/mm.

Bull Nosed Cutter: A bull nosed cutter with two coated
circular inserts is used in milling Titanium Ti6Al4V and Aluminum Al-
7075 alloys. The cutter was first designed using the proposed general
geometric model as shown in Figure 8. The cutting forces are
predicted for slot milling of Ti6Al4V with one insert. The orthogonal

cutting database was used in evaluating the average cutting constants.
The simulated and measured cutting forces were found to be in good
agreement as shown in Figure 8. The same cutter was also tested on
Al-7075. The transfer function of the cutter attached to taper 40
spindle with a mechanical chuck is given in Table 1. The transfer
function model has the following structure:
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where Fx, are the vibration and force in the feed direction,

respectively. kxkx ,, ,ως are the damping ratio and natural frequency for

mode k , and K is the number modes. The modal parameters are
evaluated from estimated complex mode residues )( kk iυσ ±  as

)(2 ,,,,1 kkdxkknxkxkxR υωσωζ −= , kkR σ2,2 = . Similar terminology is

used in the normal direction (Y). The chatter stability lobes of the
system are predicted both in time and frequency domains, see Figure
9. The analytical stability solution is accurate, computationally fast,
and agrees well with the stability lobes predicted by time consuming,
iterative time domain solutions (Altintas and Budak, 1995). The
stability diagram indicates chatter free milling speed at 14000 rev/min
with an axial depth of cut 4.7 mm. The same axial depth is predicted to
produce significant chatter at the lower spindle speed of 9500 rev/min.
The simulated and experimentally measured cutting forces, simulated
surface finish, forced and chatter vibration frequencies indicate the
correctness of the proposed model. At 14000 rev/min spindle speed,
there is no chatter, the cutting forces have regular static pulsation at
tooth passing frequency, and the predicted surface finish is smooth. At
9500 rev/min, there is chatter at 1448 Hz which coincides to second
bending mode of the spindle in the feed direction, the force
magnitudes are at least twice larger than chatter free machining test,
and the surface is quite wavy.

Table 1. Measured modal parameters of the bull nose inserted cutter on
a machining center.

Direc-
tion

Mode nω  [Hz] ζ  [%] Mode Residue [m/N]
)( kk iυσ ±

X 1
2

452.77
1448.53

12.37
1.65

(92.02966– i 186.2195) .10-6

(-41.81562– i 304.362) .10-6

Y 1
2

516.17
1407.64

2.43
3.24

(-2.39290– i 172.1539) .10-6

(40.55052– i 361.8808) .10-6

The authors conducted various cutting tests with helical ball and
cylindrical helical end mills and obtained similar results. The objective
of the research has been to design a virtual milling simulation system
which can handle a variety of different end mills for improved cutter
design or process planning in industry.

5. CONCLUSION

A generalized mathematical model of arbitrary end mills is
presented. The model allows parametric design and representation of
variety of end mill shapes and helical flutes. Sample design examples
include cylindrical, ball, tapered helical end mills as well as inserted
bull nosed cutters. The model allows evaluation of local cutting edge
geometry along the flute. Using previously developed exact kinematics
of dynamic milling, the chip thickness and the corresponding cutting
forces, vibrations, and dimensional surface finish generated by end
mills with arbitrary geometry. The mathematical models are supported
by a number of experiments conducted with helical tapered end, ball
end and bull nosed cutters. The proposed approach allows the design
and analysis of variety of milling operations used in industry.
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